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1. NSPT, Langevin equation, gauge fixing and all that

Numerical Stochastic Perturbation Theory (for a review see Ref. [a]p@verful tool to study
higher-loop contributions in Lattice Perturbation Theory (LPT). LPT is muchenmovolved than
perturbation theory in the continuum, and thus only few results beyontbopdevel are available.
There have already been various applications of NSPT in the past: tregav@laquette to very
high orders in pure Yang-Mills theory to identify the gluon condendatetfi@] residual mass for
lattice HQEF [B], renormalization factors for bilinear quark operatdrsrgijormalization factors
related to the QCD pressuld [5] etc. Relatively new is the application of N&BITion and ghost
propagators in Yang-Mills theory][§] 7]. Here we report on first stepsards an NSPT study of
the ghost propagator in Landau gauge, in particular at two-loop level.

It is known that the lattice Langevin equation with an additional running “timé&eyond the
four physical dimensions, leads to a distribution of the gauge link fieldsrdiogpto the measure
exp(—Sg[U]) in the limitt — . Discretizing the timé = nt and using the Euler scheme, the
equation can be solved numerically by iteration:

Uxu(n+1n) = exp(—FuU, n]) Uxu(mn) (1.1)
with a force containing the gradient 8§ and a Gaussian random noige
FoulU,n] = i(t0x uSelU] + VT nxy) - (1.2)

Oy is the left Lie derivative acting on gauge group-valued variables whilés Wilson’s one-
plaquette gauge action.

In NSPT one rescales= 31 and expands the link fields (and the force) in terms of the bare
coupling constang 0 B~/2:

Uxu(tin) = 14 S B0 (E6N). (1.3)
1>0

Then the solution[(1].1) transforms into a system of updites U’, one for each perturbative
component):

U =u®W_f@®  y@ =y@_F@ L Z(FO2Z_pOy® (1.4)

The random noisg is fed in only throughF ), higher orders become stochastic by propagation
of noise through the fields of lower order.
In terms of the (algebra-valued) gauge field variaBleslogU,

Acultin) — %B'/ZAQL(t:n), A =ToAT, (1.5)
1>

we are enforcing antihermiticity and tracelessness to all ordeg®ynrequiring
AT — Al rAl) = 0. (1.6)

The Landau gauge is achieved by iterative gauge transformations ugartuabatively expanded
version of the Fourier-accelerated gauge-fixing mettidd [8] applied ¢b B&-th configuration

in the Langevin process. Only these are evaluated in order to controlitbeoarelations. Each
Langevin updatd (1.4) is completed by a stochastic gauge-fixing step authtsgicting zero modes
of A as described in Ref{][1].
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2. The ghost propagator in NSPT and in standard LPT

The continuum ghost propagatdtg?) in momentum space is defined@¥®(q) = 52°G(q?).
On the lattice it is obtained as the color trace

Glag(k) L

= Nzl_ 1G""""(aq(k)) -\ 1 (Tr M‘l(k)>U (2.1)

as a function of the lattice momerda, (k) = 27k, a/L, associated with plane wavgs labelled
by integersk, = (—Lu/z, L,,/Z]. In Landau gauge, the ghost propagator requires the computation
of the inverse of the Faddeev-Popov (FP) operator

M =—a-D(U), (2.2)

with D(U) being the lattice covariant derivative aiche left lattice partial derivativeM —(k) in
(2.3) is the Fourier transform of the inverse FP operator.
The perturbative expansion is based on the mapping

(A — MOy = (Y (2.3)

With an expansion o in terms ofM() containingA(), a recursive inversion is possible in coor-
dinate space:

Y —1} M_ _ M 0]71 Ii)M (=) M —1](1) ‘ (2.4)
i=

The momentum-space ghost propagatartaop order is obtained from even ordées 2n of M—1
sandwiching its foregoing expansion between the plane-wave vectors:

G (ag(k)) = (k| M 1" k. (2.5)

Odd| orders have to vanish numerically. We discuss the results in terms of two fufrihe
dressing function for one and two loops:

I (ag) = (ag)® GV (aq(k)), () = G G (ag(k)). (2.6)
Here we use the standard notation for hat-varialdes,
qu(k“)_a&n(L“) _asm< > ) (2.7)

In standard LPT, loop contributions are calculated in the infinite volumeaardd limit. In
this limit the two dressing functions coincide. The renormalization of the drgdsimction is
performed in the RI'-MOM scheme:

! J(a,q,arr)
JRI U, ORy) = T\ TRY 28
(@1, der) Zgn(a, U, oRy) (2.8)
with the renormalization condition
IR (a1, Ry gz = 1. (2.9)



The Landau gauge lattice ghost propagator in stochastitysbation theory Ernst-Michael ligenfritz

Restricting ourselves to two-loop order, we have.
2 k
J(a,9,0rr) =1+ Zlall?l’ Z Z% ( log(aq) ) (2.10)
i=

Only the leading coefficientaff'/ are entirely calculable in continuum perturbation theory (PT):
2y = —3N/2, 2] = —35N2/8. The non-Ieading coefficients} |i-i-0 are only partly known
from PT:zf} = (—QlJr 3—5le5') thez® have to be calculated in LPT. For example, enterfig
is 2l = 13.8257, known from one-loop LP[9], whilely) is unknown.

From the relation[[10pry = ao + (—(22/3) Nclog(au) +73.9355 ag + ... , with the bare
couplingap = N¢/(8m2B), we get for the two-loop dressing function:

P eR(a,q.p) =14

B (\]171|Og(aC])2—|—\]1’0) BZ (J22I0g (aq) +J2’1Iog(aq)2+J2,0)(2.11)

with
Ji1=—00854897 Jio=0525314 Jpp=0.0215195 Jp;=-0.358423 (2.12)
and the unknown finite two-loop finite constakhp or 2 ,

B0 = 1.47572+0.0014436 55 (2.13)

3. Results

The aim of this first investigation of the ghost propagator in NSPT was thérewtion of
the knownJy o, and a prediction of the unknowh . We concentrate ourselves on an analysis of

3 (g).
As an example of the measured ghost propagator we show the one- atabpve@sultsj (M
andJ @ for the dressing function in Fi@ll 1 together wit"=3/2) that is bound to vanish.
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Figure 1: Measured ghost dressing functi(ffq) vs. ¢ for all inequivalent lattice momentum 4-tuples
(K1, k2, ks, ka) - see (2.2) - near the diagonal ones for lattice sizes, ..., 14 and for the time step= 0.01.
Left: The one-loop[{ B~1) and two-loop [0 B2) contributions, right: the vanishing contributiahB /2.
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3.1 The limits to be taken

e The limite — 0: We solved the Langevin equations for different step size9.07,...,0.01
and obtained the Langevin result for each chosen momentum set of {hegptor at fixed
lattice sizel. ande = 0 by extrapolation as shown in Fig. 2.
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Figure 2: Linear plus quadratic correction extrapolatiorete: O of the one-loop (left) and two-loop (right)
ghost dressing function for the momentum tufdlel, 1, 1) on a lattice of size 12

e ThelimitsL — o anda — 0: In order to make contact with standard LPT both limits have to
be performed. To extract the non-logarithmic constants in those limits we makaltvang
ansatz for the dressing function taking into account hypercubic symnoeteyloop example;
here we use the standard notation for hypercubic invariants)

JI(G) = J11og 67" + J0..(6), (3.1)
~4 ~6
JioL(6) =JioL +a G +c gz +¢3G*+ca(G3)%+cs 22 +¢5(G%)°+-  (3.2)

The problem arising here is how to represent — on finite lattices — the logaghagr in the
L — oo regime. Our proposal here is to replace the divergent lattice integralgjiteaise to
the logarithms, by finite lattice sums and use these expressions in the fits dt.fixed

3.2 Handling the lattice logs encountered

We illustrate the procedure by the example of a typical one-loop divengkufral

m/a  d*k 1
Aad) = (m? [ Sl (3.3)
—n/a (2m) k2(k+q)
In the limitagq— O [L4] one gets
A(ag) = —log(ag)®+a1, & =2+F— & =5.79201 (3.4)

On a lattice with finite we calculate the corresponding lattice sums:

AGOL) = 1 (3.5)

L ilvi;?nu [zﬁ:lsinz (%iu)} [So—ysin? (F(iv —ih)]
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. .
with ak, = 2% aq, = 24 {i,,id} € (~5,5]. This leads — for each — to the replacement:

Jiolog(ag)? — 2 J10(AG%,L) —ay) . (3.6)

This also results in a reshuffling of irrelevant terms. The result is a flafjesfithe data with the
log-terms subtracted (see Fifj. 3). This then allows to extradf thec limit fitting the remaining
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Figure 3: Original and remaining “non-logarithmic” contributions d using logarithms and lattice loga-
rithms at one-loop and two-loop level as functiomdffor a lattice 14.

non-logarithmic data (at present no momentum cuts on the data are used)etistiz[(3]2). In a
similar spirit, a log-squared behavior in a two-loop contribution is modeled ioyg ke following
expression as a discretized version[of [11]

m/a  d4k
E(aq) = (4m)* /_ e (277 7, (k/qu) ZA(ak)—élogz(aq)z—(a1+1)log(aq)2+28.0086 (3.7)

whereA(ak) anda; are defined in[(3]3) andl (3.4).

3.3 Results based on the outlined fitting procedure

The results fordio;. and J,0;. as function of ¥L* are shown in Fig[l4. A linear fit for
L =10,12 14 leads to the one-loop result
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Figure 4: TheV — oo limit of the constantfn,oﬂ_.
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Jf§ = 0.525524) (3.8)

in agreement with the expectations. A linear fit as in the one-loop case waldde preliminary
two-loop value];fit = 1.47(2). This results in the non-logarithmic contributinﬁ'{ to the two-loop
ghost self-energy in the RI'-MOM scheme in Landau gauge being conpatith zero.

4. Summary

e We have performed the first two-loop calculation of the lattice ghost paipagn Landau
gauge.

e The one-loop constadi o agrees with the knowd — oo result.
e The two-loop constank o has been estimated for the first time.

e A detailed analysis of all necessary limits has been performed.

e A proposal about how to mimic the usual logarithmic terms on finite lattices is made. An

alternative procedure outlined in R [7] is under development.

e A detailed comparison for a finite volume and a set of lattice momenta with Monte Carlo

data would be desirable in order to separate out the nonperturbataesetfin the ghost
propagator.
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