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1. Introduction

As well known, the overlap fermions [1] have an exact chiral symmetry on the lattice, that is,
the fermion operator satisfies the Ginsberg-Wilson (GW) relation. This is an ideal formulation to
compute the quark condensate, which is an important physical quantity as an order parameter of the
spontaneous symmetry breaking, without running into the subtle additive renormalization problem.
A renormalized quark condensate depends on the renormalization scale and scheme, but, in order to
avoid such dependences it is usually convenient to choose a renormalization group invariant (RGI)
as a reference quantity,

ΣRGI = lim
g0→0

ZP(g0)Σlat(g0), (1.1)

where I have used the fact that thanks to the chiral symmetry on the lattice the renormalization
factors for the flavor singlet scalar and the flavor non-singlet pseudo-scalar density are equivalent
even at a finite lattice spacing. Recently, the JLQCD collaboration [2] estimated the bare quark
condensate, and then performed the renormalization through a non-perturbative scheme, so called,
RI/MOM scheme. However, in order to carry out the renormalization in a solid way, here I will use
more sophisticated scheme, the Schrödinger functional (SF) scheme. As well known this scheme
can be defined non-perturbatively at massless point, and can avoid the large scale problem.

Now let me explain how to carry out the non-perturbative renormalization of the quark con-
densate by making use of the SF scheme. My final goal is the RGI condensate in eq.(1.1). In order
to get this quantity from the given bare quantity the renormalization factor ZP(g0) is required. This
factor can be obtained by the following renormalization program which is divided into three parts.

ZP(g0) = ẐPT
P,SF(∞,µPT)UNP

P,SF(µPT,µhad)ZNP
P,SF,ov(g0,aµhad). (1.2)

First, the left factor ẐPT
P,SF(∞,µPT) is required to remove the scale and scheme dependence of the

quark condensate. If the energy scale µPT is so high then it is sufficient to use perturbation theory
to get this factor. The middle factor represents the non-perturbative evolution of ZP from a low
energy µhad to the high energy scale. Actually a product of this factor and the previous one was
already calculated by the ALPHA collaboration [3] for Nf = 2 in the SF scheme. Note that it is
independent of the discretization, that is, the lattice action. The right factor, Z NP

P,SF,ov(g0,aµhad),
is a renormalization factor relating the bare quark condensate and a renormalized one at a certain
renormalization scale, which should be low energy µhad in order to avoid large cutoff effects. In
fact, the last factor is a missing piece to get the RGI. Since this factor depends not only on the scale
and the scheme but also the lattice action (now it is the overlap fermion), first of all, one has to
define the overlap fermion in the SF.

In the next section, I will briefly introduce the formulation proposed by Lüscher. I will not
compute ZP in this report, instead I will show some preparative studies, spectra of free operator and
universality check at both tree and quantum level. Furthermore I will address cutoff effects for the
overlap fermion at one-loop level. More details about results shown in the report can be found in
Ref. [4].

2. Formulations of the overlap fermion in SF

Since the boundary conditions of the SF are not compatible with the chiral symmetry, it is
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not so trivial to formulate the overlap fermions in the SF. An important issue is how to break
the GW relation while keeping the boundary conditions (up to O(a)). So far, three formulations
have been proposed. First one is an orbifolding construction by Taniguchi [5], which contains
some subtleties. However, as Sint showed in Ref. [6], such subtleties can be partially removed by
introducing a chirally rotated version of the SF. Nevertheless, this is rather technically involved. In
this report, I take rather simpler one, so called universality formulation proposed by Lüscher [7].

Let me introduce the universality formulation briefly. A massless operator is given by

āDN = 1−
1
2
(U + γ5U†γ5), ā = a/(1 + s), (2.1)

U = AX−1/2, X = A†A+ caP, A = 1+ s−aDw, (2.2)

where s is a tunable parameter to optimize computational costs, and Dw is the Wilson operator in
the SF. A crucial difference of the overlap operator in the usual lattice and that in the SF is the
presence of an operator P in the inverse square root. This operator is supported near boundary and
plays an important role to produce the correct boundary conditions in the continuum limit. Due to
the presence of P, the matrix U is not unitary anymore. Accordingly the overlap operator does not
satisfy the GW relation, instead it follows the modified relation,

γ5DN +DNγ5 = āDNγ5DN +∆B, (2.3)

with a breaking term ∆B. It is shown [7] that this breaking term is exponentially suppressed away
from the boundary, therefore, the chiral symmetry is approximately maintained in the bulk. The
coefficient c in eq.(2.2) has an important role to cancel O(a) corrections of physical quantities, and
it has a perturbative expansion

c = c(0) +g2
0c(1) +O(g4

0). (2.4)

According to the original paper, I set the tree value c(0) = 1+ s, which is an optimal choice for the
tree level O(a) improvement, in the following calculations.

In the definition of the overlap operator, there is the inverse square root. Due to the presence of
the background field, the kernel of the inverse square root is not diagonal matrix anymore even in
the free case and even after performing partial Fourier transformations. Therefore I have to rely on
the numerical approximation even in the perturbative calculation. To this end, I use the minimax
polynomial approximation [8],

X−1/2
p ≈

N

∑
k=0

ckTk((2Xp − vp −up)/(vp −up)), (2.5)

where Tk is the Chebyshev polynomial of degree k. Xp is a kernel in the time-momentum space
whose size is 4(T/a− 1) square for a fixed spatial momentum configuration p, and the minimal
and maximum eigenvalues of Xp are denoted by up and vp respectively. The coefficient ck is
determined by the Remez algorithm to obtain the Minimax polynomial. In the summation step,
I use the Clenshaw sum scheme in order to maintain numerical precisions. An accuracy for the
approximation is set to 10−13. Given this accuracy, a ratio between the minimum and maximum
eigenvalue determine the degree of polynomial. In my computation, up/vp ∼ 0.01 for a typical
case. Then the degree of polynomial turns out to be N ∼ 100. This is just for a purpose to give
some feeling.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
1
8

Universality check of the overlap fermions in the Schrödinger functional Shinji Takeda

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

L/a=6

PSfrag replacements
GW (L = ∞) -1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

L/a=12

Figure 1: Spectrum of āDN with s = 0 and θ = 0 in the presence of the background field.

3. Spectrum of free operator

Spectra of the free massless operator āDN are shown in Figure 1 for L/a = 6,12. The parame-
ters are set to s = θ = 0 where θ parameterizes the generalized boundary conditions for the spatial
directions. The non-vanishing background gauge field [9] is used here. Blue points, which belong
to a zero spacial momentum sector, and red points, which are from the other sector, represent indi-
vidual eigenvalues. Actually in the original paper [7], it is shown that the operator is bounded by a
unit circle

||āDN −1|| ≤ 1, (3.1)

and it is given by the black solid circle in the plot. This equation indicates that all eigenvalues
are contained in the circle. On the other hand, in the infinite volume case, that is, the usual GW
fermion, it is known that all eigenvalues lie on the circle. Therefore the deviation from the circle
is considered as boundary effects or finite size effects and actually such deviation is reduced for
larger lattice in the right panel of Figure 1. Especially I found that the blue points are strongly
affected by the boundary effects in the sense that they are distant from the circle.

Furthermore, I investigate spectra of hermitian operator L2D†
NDN. Actually the eigenvalues

for this operator have continuum limit [10]. Figure 2 shows scaling behaviors of the ten lowest
eigenvalues. All cases converge to the continuum limit properly for both θ values. Therefore I
conclude that the universality at the tree level is confirmed.

4. Universality check in perturbation theory

In the previous section I have investigated the property of the free operator. In this section, let
me address the universality at the quantum level. For the purpose, I consider the SF coupling [9, 10]

ḡ2
SF(L) =

∂Γ
∂η

∣

∣

∣

∣

η=ν=0
= g2

0[1+m1(L/a)g2
0 +O(g4

0)], (4.1)

where Γ is an effective action of the system and the standard convention T = L is taken. Now I
am interested in the one-loop contribution m1(L/a). This is composed from the gauge and fermion
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Figure 2: Spectrum of L2D†
NDN with θ = 0 (left) and θ = π/5 (right) in the presence of the background

field. The red points represent the continuum values from [10].

parts, m1(L/a) = m1,0(L/a)+ Nfm1,1(L/a), and I compute the fermion part numerically by using
the overlap operator. And then I analyze the data according to the Symanzik’s expansion form

m1,1(L/a) = A0 +B0 ln(L/a)+A1a/L+B1a/L ln(L/a)+O((a/L)2). (4.2)

I extract first few coefficients, A0, B0,... by making use of the method in Ref. [11].
The first coefficient A0 is generally a function of the parameter s, and I get A0(s)|s=0 =

0.012567(3), while by combining the results of Ref. [10, 12], A0(s)|s=0 = 0.012566 can be de-
duced. Consistency can be seen with a reasonable degree of accuracy. B0 is a coefficient of the log
divergence and this is related with the fermion part of the one-loop coefficient of the beta function,
bF

0 = −1/(24π2). I confirm B0 = 2bF
0 up to 4 digits for several values of s. From these results, I

can conclude that the universality at the quantum level is confirmed. Furthermore, I determined A1

as a function of s. Actually this gives fermion part of the O(a) boundary counter term at one-loop
order, c(1)

t = c(1,0)
t +Nfc

(1,1)
t ,

c(1,1)
t = A1/2 = −0.00958−0.00206s−0.00484s2 −0.00748s3 −0.01730s4. (4.3)

This formula will be used for future simulations to achieve one-loop O(a) improvement. I checked
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Figure 3: One-loop relative deviation as a function of (a/L)2 with θ = π/5.

B1 = 0 up to few digits. Since this is a signal for tree level O(a) improvement, I can confirm this in
an actual manner.

5. Lattice artifacts of step scaling function

Finally let me show lattice artifacts of the step scaling function, which describes the evolution
of the running coupling,

σ(u) = ḡ2(2L), u = ḡ2(L). (5.1)

The relative deviation is defined as

δ (u,a/L) =
Σ(u,a/L)−σ(u)

σ(u)
= δ1(a/L)u+O(u2), (5.2)

where σ(u) represents the step scaling function in the continuum limit and Σ(u,a/L) is that on the
lattice, and this tells us the size of lattice artifacts. I evaluate the fermion part of this quantity to
one-loop order, δ1(a/L) = δ1,0(a/L)+Nfδ1,1(a/L).

Figure 3 shows its scaling behavior. Note that the overlap fermion with s = 0 shows almost flat,
and this value of s is an optimal choice from the point of view of lattice artifacts. For comparison,
I include the results of the clover action [10], and it also shows small cutoff effects. Therefore I
conclude that the lattice artifacts of the clover and the overlap fermion with s = 0 are comparable.

6. Concluding remarks

Among some formulations, I choose Lüscher’s formulation. I investigate the spectra of the
free overlap operators, and then I observe the expected behaviors. Next, I confirm the universality
at quantum level, and determine the O(a) boundary counter term at one-loop order, c(1,1)

t . This is
needed in future simulations to reduce cutoff effects. Furthermore I investigate the lattice artifacts
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of the step scaling function to one-loop order, and then it turns out that the scaling behavior of the
overlap is comparable with the clover action.

As next targets, there are several quantities within perturbation theory. In this report, I ex-
clusively consider the massless case, however, I will investigate massive case too. A comparison
study with the orbifolding formulations is also interesting. Furthermore, still there is an improve-
ment coefficient which I have to compute before starting simulations, c(1) in eq.(2.4). In fact the
coefficients c is only accessible within a framework of perturbation theory, therefore two-loop
calculations will be required. In that course, it is very convenient to use the automatic method
developed last year [13].

Finally, I have to remind readers that my final goal is the non-perturbative computation of ZP.

I thank the Deutsche Forschungsgemeinschaft (DFG) for support in the framework of SFB
Transregio 9. I also thank FLAVIAnet for financial support.
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