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1. Determining Lattice Scales

We find the lattice spacing, a, on a series of MILC [1] ensembles by calculating the spectrum
of the ϒ (upsilon) particle and defining the spacing as the ratio of the lattice value over the experi-
mental value of the 2S-1S energy splitting. The ϒ is chosen because the ϒ 2S-1S splitting is known
from experiment to be insensitive to the valence heavy quark mass.

This gives us values of a particular to the ensembles we used in our calculation, but we can
make this more generally useful by use of the heavy quark potential scale parameter known as r1.
The r1 parameter is defined as the value of r at which r2F(r) = 1 where F is the gradient of the
heavy quark potential. It is not a physically meaningful quantity, and is not something that can be
measured by experiment, however it is quantity that lends itself to calculation on the lattice, and
indeed r1/a is one of the first things calculated by the MILC collaboration on the ensembles that
they generate.

Lattice V. Coarse Coarse Superfine
Size 163 ×48 163 ×48 203 ×64 243 ×64 483 ×144
n f 2+1 2+1 2+1 2+1 2+1
β 6.572 6.586 6.760 6.760 7.470
u0Pamu,d 0.0097 0.0194 0.010 0.005 0.0036
u0Pams 0.0484 0.0484 0.050 0.050 0.018
u0L 0.8218 0.8225 0.8359 0.8362 0.8695822
aM0

b 3.40 3.40 2.80 2.80 1.34
n 4 4 4 4 4
Configs 631 631 595 202 132
Origins 24 24 32 32 8

Table 1: Summary of MILC ensemble parameters[1] Sea quark masses are given using the MILC convention
which includes a factor of u0 obtained from the plaquette. We also give values of u0 from the Landau gauge
link which we use in the NRQCD action. Origins are the number of different starting times used on each
lattice. n is the NRQCD stability parameter, see [2]. The value of 4 is different from our previous work which
used 2[3]. The higher value is needed for the superfine ensemble, and it is beneficial to use a consistent value
across all ensembles to keep discretisation errors comparable. ‘Configs’ is the number of configurations used
in this work, and may not represent the total number of configurations in existence for that ensemble.

We use our determination of a on particular ensembles along with the MILC determination
of the r1/a parameter on these ensembles to give a value of r1 in physical units. This value,
once extrapolated to the continuum limit (i.e. a → 0), is a ‘real world’ value which, in principle, is
independent of ensemble. The value of r1 can be combined with the r1/a values of other ensembles
to define their values of a. Thus our scale determination is no longer specific to the ensembles we
used, and is portable to other lattice ensembles.

The improvement of the error in this quantity is significant because the uncertainty in the lattice
spacing contributes to the error of any physical lattice result, in some cases to powers greater than
1, and can dominate the overall error in such a result. This is the case for several of our high
precision calculations, for example our π , K, D, Ds decay constants paper [4].
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We use the NRQCD action for our valence b-quarks (see [2]). Our valence quarks are applied
to the lattice using a random wall: a random phase associated with the each point of the lattice,
which effectively allows us to produce a meson centred on every spatial point of the lattice at the
chosen start time. We also utilise various smearing functions to optimise the signal for the states
we are interested in, for example to pick out the 2S energy level. The 2S smearing is chosen to
be a function that has a large amplitude for the 2S energy, and more importantly has a very small
amplitude for the 1S. The use of these “all-to-all” mesons improves the usage of the available
ensembles, while the smearings applied to them allow us to concurrently fit multiple correlators,
yielding a better fit.

We have found that the random wall method yields very precise results for the ground state
(1S) energy, with errors ∼ 10 times smaller than those produced without the random wall. In
contrast, we have found little improvement for the 2S energy when comparing the random wall
with smearing function to the smearing function alone.

2. Results

2.1 Lattice Scale Determination

We calculated a physical r1 value on the 5 MILC ensembles mentioned using r1/a values
from MILC [5], and the values are plotted below (Figure 1). With the exception of the Superfine
ensembles, the errors in these values are all at the ∼ 1% level. This compares favourably with the
existing determination of 0.321(5) fm [3], which is 1.5%.
Within our errors, we see no significant change in r1 as a function of either a or mlight .
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Figure 1: r1 plotted against mlight . mlight includes a factor of u0P from the MILC mass convention as in
Table 1
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2.2 Leptonic Width

The ratio of leptonic widths of the ϒ′ and ϒ can easily be calculated on the lattice. By taking
the ratio, factors such as the Zmatch renormalisation cancel, making it easier to obtain a precise
determination.
To find this ratio, we need matrix elements of the vector current between the appropriate ϒ states
and the vacuum. This is, at leading order in the relativistic expansion of the currents, simply the
amplitudes of the δ -smearing in these ϒ states, which is equivalent to the wavefunction at the origin
in a potential model - Ψn(0). For the 2S:1S ratio, we then have:

Γee(2S)M2
ϒ(2S)

Γee(1S)M2
ϒ(1S)

=
|Ψ2(0)|2

|Ψ1(0)|2

The results from this can be seen in Figure 2. We see some dependence on a2 in Figure 2, how-
ever the results at the same lattice spacing are consistent with each other despite the differences in
the light quark mass. These results appear to be heading towards consistency with the experimental
result as a → 0.
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Figure 2: Leptonic width vs. the square of the lattice spacing. Experiment is from [6, 7]

2.3 Kinetic Masses

The mass of the ϒ cannot be extracted directly from the calculation because the zero of energy
in NRQCD is offset. We must instead use ϒ particles with momentum to extract the mass using the
following relation based on the standard E 2 = M2 + p2 equation, where dE is an arbitrary energy
offset:

Using the kinetic mass, we can tune the b-quark masses that we input at the start of a calcula-
tion until we get a consistent result. For the coarse ensembles, we obtained M kin

ϒ = 9.48(6) GeV,
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E0 +dE = M
Ep +dE =

√

M2 + p2

so (Ep −E0 +M)2 = (∆E +M)2 = M2 + p2, giving:
M = (p2 −∆E2)/2∆E

and for the very coarse we obtained 9.45(7) GeV, the dominant error is from the uncertainty in r1.
The experimental result is 9.46030(26) GeV [7].

2.4 Hyperfine Splitting

The hyperfine splitting in the ϒ system (i.e. the ϒ(1S) and the ηb(1S) mass difference) has
been notoriously difficult to measure experimentally. Its value was predicted from full lattice QCD,
albeit with a 25% error, by the HPQCD collaboration in 2005 [3]. The new experimental result from
BaBar agrees with this prediction [8]. Here, we endeavour to improve on this result, and compare
to the new experimental result from the BABAR collaboration [8].

We see little dependence on the light quark mass. This is expected as long as the quark masses
are not excessive (i.e they need not be correct, they must simply be ‘light’). There is, however,
strong a dependence (Figure 3), and this limits how well one can make a determination of a result
in the continuum. The error in the previous theoretical result is largely caused by this, and we
expect a better result from this work, especially since we have results from ensembles closer to the
continuum than before.

The error in the lattice data points includes the error from our a−1 determination and statisti-
cal/fitting errors in the lattice-unit energy splitting. It does not, however, include systematic errors
such as radiative and discretisation errors in the NRQCD action. This requires further work.

3. The Foo Particle: Checking Systematics

The ’Foo’ particle is an unphysical particle that was contrived as a check of the discretisation
errors in the NRQCD action.

The Foo has been designed to be larger than the ϒ particle, and as such it is less sensitive
to the lattice spacing. Any discrepancy in a comparison between the Foo and the ϒ can then be
attributed to discretisation errors in the ϒ. To achieve this, the artificial valence ‘quarks’ that we
use to construct a Foo are given a lower mass than the valence b-quarks used in the ϒ.

The Foo has also been designed to have no spin structure, so all spin-dependent terms are re-
moved from the action. We keep only a simple P2/(2M) Hamiltonian with corrections for discreti-
sation errors. The spin terms are unimportant in an already unrealistic particle, and their removal
improves the speed at which the particle can be computed. Furthermore, this aspect of the particle,
along with the lower valence ‘quark’ mass, allows for a relatively straightforward perturbation the-
ory calculation along the lines of [9] which can be used to determine the radiative corrections for
the remaining coefficients (currently both set to 1) in the modified NRQCD action applied to the
Foo. Work is in progress on this, and on the associated numerical calculations of the Foo spectrum.
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Figure 3: Hyperfine splitting against lattice spacing squared. Experiment is from the BABAR
collaboration[8]. (Continuum theory and experimental result offset on the x-axis for clarity.) Results at
different mlight are included for the coarse and very coarse ensembles.

4. Conclusions

Through this work, it is likely that we will be able to update our physical value for r1 with
increased precision. Our preliminary results have approximately 1% errors and cover a larger range
of lattice spacing values than our previous calculation. Our preliminary results for the hyperfine
splitting and ϒ′/ϒ leptonic widths also look promising.
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