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1. Introduction

Strong coupling and quark masses constitute fundamental parameters of QCD part in the stan-
dard model. One of the important task of lattice QCD is to determine these parameters from inputs
at low energy scale. Hadron masses, meson decay constants and quark potential quantities are
adopted as physical inputs and QCD running coupling and quark masses should be given. These
results may be compared with independent evaluation from high energy inputs, which may uncover
existence of systematic error if there is.

In a course of evaluating these fundamental parameters in the Lagrangian we need a process of
renormalization in some scheme. It is now recognized that systematic deviation due to perturbative
renormalization is large for quark mass and also for running coupling at low energy region. Non-
perturbative renormalization is essential for this work. Among several non-perturbative schemes
on the lattice the Schrödinger functional (SF) scheme [1, 2, 3, 4] has an advantage that systematic
errors can be unambiguously controlled: A unique renormalization scale is introduced through
the box size to reduce the lattice artifact and a large range of the renormalization scale can be
covered by the step scaling function (SSF) technique. The latter virtue matches our purpose to
make comparison with high energy inputs.

For the SF scheme we need to start with evaluation of the running coupling in order to in-
troduce the renormalization scale. It is strongly expected that three light quarks should involve
in running of the coupling at low energy scale, where non-perturbative effects becomes large. So
introduction ofu,d,squarks would be important for non-perturbative running of the coupling. This
report presents preliminary results of our calculation for the running coupling inNf = 2+1 QCD
with SF scheme. The physical scale shall be introduced through the Sommer scaler0 evaluated
independently by the CP-PACS collaboration with lightNf = 2+1 configuration [5].

2. Schrödinger functional formalism and action

The Schrödinger functional is given as a field theory in a finite box of sizeL4 with a Dirichlet
boundary condition at temporal boundary. For QCD the Dirichlet boundary condition is set for
spatial component of the gauge link

Uk(x)|x0=0 = exp(aCk) , Uk(x)|x0=T = exp
(
aC′k

)
, C(′)

k =
i
L




φ (′)
1

φ (′)
2

φ (′)
3


 (2.1)

and quark fields

ψ(x)|x0=0 = ψ(x)|x0=T = 0, ψ(x)|x0=0 = ψ(x)|x0=T = 0. (2.2)

Under a lenient condition it is proved that the tree level gauge effective action has a global minimum
around a background fieldVµ which is uniquely given by the boundary fields (2.1). On the other
hand the fermionic mode is shown to have a mass gap, with which we are able to define mass
independent scheme in the chiral limit without any extrapolation. The renormalization scale is
given only by the box sizeL.
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We adopt the renormalization group improved gauge action of Iwasaki type

Sg =
β
N ∑

C∈S0

W0(C,g2
0)Re tr(1−P(C))+

β
N ∑

C∈S1

W1(C,g2
0)Re tr(1−R(C)) , (2.3)

whereS0 andS1 are sets of oriented plaquettes and rectangles. The weight factorW0/1 is given to
cancel theO(a) contribution from the boundary according to [6, 7]. The boundary improvement
coefficients are set to tree level valuecP

t = 1 andcR
t = 3/2, which is shown to give better scaling

behavior than one loop value [7, 8]. We take the same values for boundary link (2.1) as in the
previous work of the Alpha collaboration [2, 4].

We used the improved Wilson fermion action with clover term

Sf = a4∑
x

ψ (DW +m0)ψ, DW =
1
2

(
γµ

(
∇µ +∇∗

µ
)−a∇∗

µ∇µ
)−cSW

1
4

σµνPµν . (2.4)

The improvement coefficientcSW is given non-perturbatively in a polynomial form [9] which covers
1.9≤ β ≤ 12.0. We notice that there is a contribution from the boundary to cancel theO(a) effect
there

SO(a) = a3∑
~x

(c̃t −1)(ψ(~x,1)ψ(~x,1)+ψ(~x,T−1)ψ(~x,T−1)) , (2.5)

for which the one loop value [10] is takenc̃t = 1−0.00881(28)g2
0. We set twisted periodic bound-

ary condition in spatial directionψ(x+Lk̂) = eiθ ψ(x) with θ = π/5 [2, 4].
The renormalized gauge coupling in the SF scheme is defined as a coefficient of the effective

actionΓ[Vµ ] at the global minimum. For numerical simulation we take derivative in terms of a
parameterη introduced in the background fieldφi and define the SF coupling as [2]

1

g2(L)
=

1
k

∂Γ[Vµ ]
∂η

∣∣∣∣
η=0

, (2.6)

wherek is a normalization coefficient evaluated at tree level.

3. Our strategy

The goal of our project for the running coupling is to derive the renormalization group invariant
(RGI) scaleΛQCD in a unit of the Sommer scaler0. The RGI scaleΛ is scheme dependent and is
defined as follows for the SF scheme

ΛSF =
1
L

(b0g(L))
− b1

2b2
0 exp

(
− 1

2b0g(L)

)
exp

(
−

∫ g(L)

0
dg

(
1

β (g)
+

1
b0g3 −

b1

b2
0g

))
, (3.1)

whereg(L) is a renormalized coupling in SF scheme at a scaleL andβ (g) is renormalization group
function (β -function) with its perturbative expansion coefficients

β (g) =−g3(
b0 +b1g2 +b2g4 + · · ·) . (3.2)

Derivation of the RGI scale is given by the following steps in the SF scheme.
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(i) We start by calculating the SSFΣ on the lattice at several box sizes and lattice spacings. The
SSF gives a relation between the renormalized couplings when the renormalization scale is changed
by factor twoΣ(u,a/L) = g2(2L)

∣∣
u=g2(L) [2, 4], where the scale is given by the renormalized cou-

pling g2(L) and discretization error bya/L. Taking the continuum limitσ(u) = lima/L→0 Σ(u,a/L)
and performing a polynomial fit we have a full non-perturbative running of the coupling in a dis-
cretized manner.

(ii) In the second step we define a reference scaleLmax through a fixed value of renormalized
couplingg2(Lmax). The value ofg2(Lmax) is rather ambiguous if it is well in low energy region. We
then start fromLmax and follow non-perturbative RG flow through the SSF into high energy region.
After n∼ 8 iterations the scaleL = 2−nLmax is already in perturbative region where discrepancy
between perturbative and non-perturbative RG running is negligible.

(iii) Substitutingg2(L) andL = 2−nLmax given in the above into (3.1) and evaluating the inte-
gral with three loopsβ -function in the SF scheme [11] we get the RGI scaleΛSFLmax in terms of
the reference scale.

(iv) In the last step we need the physical inputr0 measured in an independent large scale
simulation at some lattice spacinga. The reference scale should also be measured at the same
lattice spacing to give a ratior0/Lmax. The requirement for the lattice spacing and the reference
scale is that magnitude of the lattice artifacta/r0 anda/Lmax should be kept small. Multiplying
these factors we get the RGI scaleΛSFr0 in terms of the Sommer scale. Transformation into the
MS scheme is given exactly at one loopΛMS = 2.612ΛSF.

4. Step scaling function

We adopted seven renormalized couplings to cover from the weak coupling regiong2 = 1.001
to strong regiong2 = 3.418separated approximately by twice the renormalization scale. For each
coupling we used three boxesL/a = 4,6,8 to take the continuum limit.

HMC algorithm is adopted for two flavours and RHMC algorithm for the third flavour, all of
which are taken to be the common mass. We adopted CPS++ code and modified for SF formalism.
For machines we make use of T2K, PACS-CS and PC cluster Kaede at University of Tsukuba, T2k
and SR11000 at University of Tokyo and PC cluster RSCC at Riken.

We start by tuning the value ofβ and κ to reproduce the same renormalized coupling at
each box sizes keeping the PCAC mass to zero, where the PCAC relation is defined in terms of
the improved axial current with non-perturbative improvement coefficient [12]. We notice that
distribution of inverse of the coupling1/g2 turned out to be smooth Gaussian even at the lowest
energy scale [8]. This is contrary to the standard Wilson gauge action [4] and we need no re-
weighting.

The renormalized couplingg2(2L) at larger scale is modified perturbatively in order to cancel
deviation of the PCAC mass from zero and that of the renormalized couplingg2(L) from a fixed
value[4, 11, 13]. A part of O(a) error is canceled at one loop level with coefficients given in
Ref. [6]. In the end we get theO(a) improved SSF on the lattice.

Preliminary result is plotted in figure1. The left panel shows scaling behavior of the SSF
at each renormalization scale, which turned out to be good except at the strongest coupling. We
performed three types of continuum extrapolation: constant extrapolation with finest two (filled
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Figure 1: SSF on the lattice with its continuum extrapolation at each renormalization scale (left). RG flow
of the SSF (right).
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Figure 2: Non-perturbativeβ -function forNf = 3 and2 QCD.

symbols) and three data points (open symbols) and linear extrapolation with three data (open cir-
cles). As is plotted in the figure they are consistent with each other except at the strongest. We
adopted the continuum fit with finest two lattice spacings as our preliminary continuum value. In
the right panel the RG running of the SSF is plotted. We divide the SSF with the couplingg2(L) to
get better resolution. Polynomial fit of the continuum SSF to sixth order

σ(u) = u+s0u2 +s1u3 +s2u4 +s3u5 +s4u6 (4.1)

is plotted (solid line) together with the three loop perturbative running (dotted line). We used one
and two loop values fors0 ands1 in the fit. From the polynomial form of the SSF we derive the
non-perturbativeβ -function of theNf = 3 QCD, which is plotted in figure2. Theβ -function of
Nf = 2 QCD is reproduced from data of the Alpha collaboration [4] for comparison.

5. Introduction of physical scale

From a independent simulation of PACS-CS collaboration atβ = 1.90 [5] preliminary value

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
2
9

Non-perturbative renormalization ofNf = 2+1 QCD with SF scheme Yusuke Taniguchi

of the Sommer scale is given asa/r0 = 0.131(35) in the chiral limit. Evaluation of the strong
coupling in the SF scheme at the sameβ in 44 box givesg2(Lmax) = 4.695(23) in the chiral limit.
We adopt this coupling as a definition ofLmax. 1

Starting fromumax = 4.695(23) we iterate non-perturbative RG flow eight times according to
polynomial fit (4.1) and substitute the result into (3.1). In the end we getΛSFLmax = 0.238(19).
Multiplying a/r0 and Lmax/a = 4 we change the reference scale tor0 and we haveΛSFr0 =
0.45(12). The large error mainly comes form systematic error ofa/r0 during chiral extrapola-
tion of strange quark mass. We need few more points to take the massless limit in a rigid way. In
order to giveΛMS in a unit of MeV we also need to check validity ofr0 = 0.5 fm in the chiral limit.

6. Step scaling function for quark mass

Since we are calculating the PCAC mass with theO(a) improved axial current it is possible
to derive renormalization factor for the pseudo scalar density as a byproduct, from which we can
extract non-perturbative running of the quark mass. However the scaling behavior of the pseudo
scalar density was shown to be bad even perturbatively [14] under the inhomogeneous boundary
gauge field (2.1) and twist factorθ = π/5 in spatial direction.

In this report we define the pseudo scalar density renormalization factor as

ZP(g0,L/a) =
fP(x0 = L/2)(tree)

(lattice)√
3( f1)

(tree)
(lattice)

√
3 f1

fP(x0 = L/2)
, (6.1)

where propagatorsfP and f1 are given in [3]. We expect cancellation ofO(a) effect at tree level
dividing by tree level propagator on the lattice. The SSF on the lattice is given by

ΣP

(
u,

a
L

)
=

ZP(g0,2L/a)
ZP(g0,L/a)

∣∣∣∣
g2(L)=u,m=0

. (6.2)

The result is plotted in figure3, which shows a rather bad scaling behavior. Although we take the
continuum limit with finest two lattice spacings in this report, we may need finer lattice spacings
to reduce systematic uncertainty, which seems to be unrealistic for computational cost.

7. Conclusion

We present a preliminary result for theNf = 2+1 QCD running coupling in the mass indepen-
dent SF scheme in the chiral limit. We used seven scales to cover from low energy to high energy
region and three lattice spacings to take the continuum limit at each scale.

Tuning of β and κ has been completed to fix seven scales in the massless limit. We are
now evaluating the SSF at the finest lattice spacings. Our preliminary result shows a good scaling
behavior except at the lowest energy scale, for which we may need finer lattice spacing to take the
continuum limit. In order to evaluateΛMS precisely we need to derivea/r0 in the chiral limit in
more rigid way. Main source of the systematic error is an extrapolation of the strange quark mass

1Unfortunately simulation in64 box givesg2(L) = 6.71(16), which exceeds our largest couplingg2 = 5.35(10) for
the SSF.
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Figure 3: SSF of the pseudo scalar density on the lattice with its continuum extrapolation at each renormal-
ization scale (left). RG flow of the SSF (right).

and we are planning to perform simulation at different parameters forr0. We also need to check
validity of r0 = 0.5 fm in the chiral limit before we evaluateΛMS in terms of MeV.

The scaling of the pseudo scalar density SSF is rather bad under inhomogeneous background
gauge field. We may need better setup with vanishing background field, which we are planning as
a next step.

This work is supported in part by Grants-in-Aid of the Ministry of Education, Culture, Sports,
Science and Technology-Japan (NOs. 18740130, 18104005).
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