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predicted form the chiral perturbation theory.
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1. Introduction

Motivated by the Dirac structure of the graphene electrons in two dimensions, Creutz intro-
duced a lattice action, which in four dimensions, describes two flavours of Dirac fermions with
exact chiral symmetry [1]. In momentum space, this action has the form:

D(p) = i Bγ4(4C−∑
µ

cospµ)+ i
3

∑
k=1

γksk(p) , (1.1)

where
s1(p) = sinp1 +sinp2−sinp3−sinp4

s2(p) = sinp1−sinp2−sinp3 +sinp4

s3(p) = sinp1−sinp2 +sinp3−sinp4

andB,C are free parameters. Creutz has shown that the zeros of this operator inthe Brillouin zone
are at(p̃, p̃, p̃, p̃) and (− p̃,− p̃,− p̃,− p̃), whereC = cosp̃. In order to get a lattice action with
one zero at the origin, we proposed a formulation, which shifts the zeros inthe Brillouin zone at
(0,0,0,0) and(2̃p, 2̃p, 2̃p, 2̃p) [2].

The minimal number of zeros allowed by the Nielsen-Ninomiya theorem is exactly two [3].
Hence, these actions achieve a minimal doubling of fermion species on the lattice. In fact, the idea
of minimally doubled action is not new. It was first pointed out by Karsten andlater by Wilczek
[4, 5]. Their actions are unitary equivalent to each other. In the free case, the Wilczek action has
the form:

D(p) =
4

∑
µ=1

iγµ sinpµ + iγ4

3

∑
k=1

(1−cospk) .

It has two zeros: one at(0,0,0,0) and the other at(0,0,0,π).

2. The Creutz Action on Orthogonal Axes

The easiest way to get a lattice action with one zero at the origin is to put the Creutz action on
an orthogonal lattice, where the action parameters satisfyBS = C, whereS = sinp̃. SettingB = 1
and translating momenta,pµ = p̃+qµ , we get:

D(q) = iγ4(4C−C∑
µ

cosqµ)+ iC
3

∑
k=1

γksk(q)+ iSγ4∑
µ

sinqµ + iS
3

∑
k=1

γkck(q) ,

where we have denoted:

c1(q) = (cosq1−1)+(cosq2−1)− (cosq3−1)− (cosq4−1)

c2(q) = (cosq1−1)− (cosq2−1)− (cosq3−1)+(cosq4−1)

c3(q) = (cosq1−1)− (cosq2−1)+(cosq3−1)− (cosq4−1)

TakingC = 1/
√

2 as well asS +C = 0, and defining:

s4(q) = −sinq1−sinq2−sinq3−sinq4

c4(q) = (cosq1−1)+(cosq2−1)+(cosq3−1)+(cosq4−1) ,
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thep-translated Creutz action takes the form:

D(q) = ∑
µ

iγµsµ(q)+∑
µ

iγµcµ(q) ,

or in the scalar product notation,(γ,x) = ∑µ γµxµ , one has:

D(q) = i(γ,s(q)+ c(q)) .

Using the following orthogonal matrices:

a :=
1
2











1 1 −1 −1
1 −1 −1 1
1 −1 1 −1
−1 −1 −1 −1











, b := −1
2











1 1 −1 −1
1 −1 −1 1
1 −1 1 −1
1 1 1 1











,

and noting that,
s = 2as̃, c = 2bc̃ ,

where

s̃ = ( sinq1, sinq2, sinq3, sinq4 )T , c̃ = (cosq1−1, cosq2−1, cosq3−1, cosq4−1 )T ,

then, the rescaled action by a factor of 2 can be written in the form:

D(q) := i(γ,as̃(q)+bc̃(q)) = i(aT γ, s̃(q)+aT bc̃(q)) .

Denoting,

α := aT b =
1
2











−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1











,

we get:
D(q) = i(aT γ, s̃(p)+α c̃(q)) .

It is easy to show thataT γ are Dirac gamma matrices:PL andPR

{(aT γ)µ ,(aT γ)ν} = ∑
ρ,σ

aρµaσν{γρ ,γσ} = 2∑
ρ

aρµaρν = 2δµν .

Therefore, the factoraT can be dropped. This way, the final expression has the form:

D(q) = i(γ, s̃(q))+ i(γ ′, c̃(q))

= ∑
µ

iγµ sin qµ +∑
µ

iγ ′µ(cos qµ −1) ,

whereγ ′ = αγ are again Dirac gamma matrices for the same reason as above. Noting that,

∑
µ

γµ = ∑
µ

γ ′µ ≡ 2Γ ,

we get another expression for the fermion action:

D(p) = ∑
µ

iγµ sin qµ +∑
µ

iγ ′µ cos qµ −2iΓ . (2.1)

This expression was elegantly derived by Creutz in terms of a linear combination of two naive
actions plus the−2iΓ term, the latter cancelling exactly one naive action at the zeros ofD [6].

3
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2.1 The Dirac Operator in Position Space

In order to write down the Dirac operator in position space, we express themomentum space
operator in terms of forward and backward propagating plane waves,eipµ ande−ipµ :

D(p) = m+
i
2 ∑

µ

[(

γ ′µ − iγµ
)

eipµ +
(

γ ′µ + iγµ
)

e−ipµ
]

−2iΓ ,

where we have added the bare fermion mass,m. Then, by making the formal substitutionipµ → ∂µ ,
one gets:

D = m1l+
i
2 ∑

µ

[

(

γ ′µ − iγµ
)

e∂µ +
(

γ ′µ + iγµ
)

e−∂µ
]

−2iΓ ,

where the shift operators,e∂µ ande−∂µ , are defined by their action on a Dirac fieldψ(x):

e±∂µ ψ(x) = ψ(x±aµ̂) .

Hence, the position space Dirac operator can be implemented using the following terms:

• the on-site term,(m1l−2iΓ)ψi.

• the forward hopping term,i2(γ ′µ − iγµ)ψ(x+aµ̂).

• the backward hopping term,i
2(γ ′µ + iγµ)ψ(x−aµ̂).

As usual, the gauge fields are introduced by requiring the hopping terms to be gauge covariant.

3. Minimally Doubled Actions and Hypercubic Symmetry

Shortly after our proposal, it was noted that the lattice action given above lacks the full sym-
metry of the hypercubic group [7]. The reason is that the action picks as aspecial direction the main
diagonal of the hypercube. Hence, in the presence of gauge field interaction, there is a dimension
five operator that enters the action, namelyψ̄Γ∇2ψ [6].

As we pointed out earlier, the idea of minimally doubled action is not new. The actions of
Karsten and Wilczek pick the time axis as a special direction. Again, the loss ofthe full hypercubic
symmetry introduces extra relevant terms in the interacting case [5, 7].

Since a minimally doubled action has necessarily two zeros, the line that joins the two ze-
ros in the Brillouin zone defines a special direction. Hence, independentlyof a specific action,
the hypercubic symmetry will be broken. In principle, there is nothing special about a hypercu-
bic action. The authors of reference [8] propose a ‘hyperdiamond’ action, which generalises the
graphene structure in five dimensions. However, the resulting action has more than two zeros. It
is an interesting question whether it is possible to have a minimally doubled action which does not
break the original symmetry of the action.

4. A Preliminary Numerical Test

So far, the present formulation has only been tested at tree level perturbation theory [9]. It
has been shown that the scaling violations are of the orderO(a2), as expected. Here, we present
preliminary results on the pion mass calculations on ten 16332 lattices generated with the SU(3)
Wilson gauge action atβ = 6.

4
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4.1 The Quark Propagator
The quark propagator,g, is computed as the solution of linear systemDg = δ , whereδ is taken

to be a point source. Since the massless operator is antihermitian, it is easy to see thatD is normal,
i.e. D∗D = DD∗. This property, which is shared by the Kogut-Susskind operator [12],allows one to
use optimal inversion algorithms. Indeed, the Conjugate Gradients algorithm on Normal Equations
(CGNE) and the Conjugate Residual (CR) algorithm are optimal Krylov subspace based algorithms
for staggered fermions [10]. Hence, the minimally doubled fermion presented here shares the same
numerical advantages, while describing two species of fermions instead offour. For the quark
propagator computations we have used the CGNE algorithm.

−4.6 −4.4 −4.2 −4 −3.8 −3.6 −3.4 −3.2 −3 −2.8
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N
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Figure 1. The scaling law of CGNE iterations with the bare quark mass. The critical exponent
is computed to bez = 0.92(4).

While optimal, this algorithm suffers from the critical slowing down, as all Krylov subspace-
based inversion algorithms do. Thus, the the number of CGNE iterations to reach a fixed accuracy
is expected to scale like∼ 1/(am)z with the inverse quark mass,am. Our data suggest a critical
exponent valuez = 0.92(4), which is clearly smaller than 1, the expected value for Wilson fermions
[10].

In the present calculations, we haven’t made any effort to accelerate the inversion. The even-
odd acceleration does not work for these type of fermions since the on-site term does not commute
with the hopping term.

4.2 The Pion Propagator and the Pion Mass
Zero momentum pion propagators are computed using the vacuum expectationvalues of cor-

relation functions of pion interpolating fields,̄ψ(x)γ5ψ(x):

G(t) = ∑
~x

< 0|ψ̄(x)γ5ψ(x)ψ̄(0)γ5ψ(0)|0 >

= ∑
~x

g(x,0)∗g(x,0) .

5
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For larget the right hand side can be fitted to the ground sate ansatz:

G(t) ∼ coshamπ(T/2+1− t) ,

where periodic boundary conditions are applied andT is the lattice extension along the fourth
diection. We computed effective masses by inverting the expression:

G(t +1)

G(t)
=

coshamπ(T/2− t)
coshamπ(T/2+1− t)

,

where the the symmetry with respect to the lattice mid pointT/2+1 is enforced. In figure 2 we plot
the pion effective mass squared at different time slices for quark massesam = 0.01,0.02,0.03,0.04,0.05.
Since effective masses show a flat behaviour one can pick the value at agiven time slice. We have
selected the values at the last time slice which display the largest errors.

8 9 10 11 12 13 14 15 16
0
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0.2

0.25

t/a
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m

π)2

am=
0.01
0.02
0.03
0.04
0.05

Figure 2. Pion effective masses squared for different quark masses.

In figure 3 we show the behaviour of the pion mass squared against the quark mass. The full
line is the least squares fit of the data which gives the result:

(amπ)2 = 0.007(17)+3.5(4)(am) .

The figure shows the extrapolated pion mass at zero quark mass, 0.007(17), which in dimensionful
units gives a pion massmπ ≃ 170(200) MeV. Here, we have assumed that, at this coupling, the
inverse lattice spacing is∼ 2 GeV. At this accuracy, the pion mass is consistent to zero.

To conclude, we have reviewed the recent efforts to revive the minimally doubled actions.
We have made a preliminary calculation of the pion mass on a SU(3) background, which behaves
as predicted by the chiral perturbation theory within the statistical error bars. The final results
of this ongoing calculation will reveal any possible discrepancy to the chiral perturbation theory.
One notices, however, that the invested computational effort to obtain these results is much smaller

6
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than for the Ginsparg-Wilson fermions. Therefore, we conclude that theminimally doubled action
presented here is worth exploring in the future.
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Figure 3. Testing chiral perturbation theory with minimally doubled actions: pion mass squared against

the bare quark mass. At zero quark mass, the extrapolated pion mass ismπ ≃ 170(200).
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