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1. Introduction

Motivated by the Dirac structure of the graphene electrons in two dimensiresitz intro-
duced a lattice action, which in four dimensions, describes two flavoursrat Bermions with
exact chiral symmetnfJ1]. In momentum space, this action has the form:

D(p) =i Bys(4C — Zcospu)+i kz % (p) , (1.1)
[

where

s1(p) = sinpy +sinpy — sinps — sinpg

S(p) = sinpy — sinpz — sinpz + sinpa

s3(p) = sinpy —sinpz +sinps — sinpy
andB,C are free parameters. Creutz has shown that the zeros of this operdteBrillouin zone
are at(p, p, p,p) and (—p,—p,—p, —pP), whereC = cosp. In order to get a lattice action with
one zero at the origin, we proposed a formulation, which shifts the zernb® iBrillouin zone at
(0,0,0,0) and(2p, 2p, 2p, 2p) [A].

The minimal number of zeros allowed by the Nielsen-Ninomiya theorem is exaalyZiv
Hence, these actions achieve a minimal doubling of fermion species on the lattiaet, the idea
of minimally doubled action is not new. It was first pointed out by Karstenlated by Wilczek
[A, B]. Their actions are unitary equivalent to each other. In the fase,ahe Wilczek action has

the form:
4 3

D(p)= 3 iy sinpu+ivay (1—cospy) .
pH=1 k=1

It has two zeros: one &0,0,0,0) and the other at0,0,0, 7).

2. TheCreutz Action on Orthogonal Axes

The easiest way to get a lattice action with one zero at the origin is to put tihkzGetion on
an orthogonal lattice, where the action parameters sa&iSfy C, whereS= sinp. SettingB =1
and translating moment@,, = p+ q, we get:

3 3
D(q) =iya(4C—C% cosqy) +iC H ws(a)+iSy ) singy +iS kzlwck(q) :
H A =

where we have denoted:

c1(q) = (cosop — 1) + (cosgz — 1) — (cosgz — 1) — (costs — 1)
C2(q) = (cosgy — 1) — (cosgz — 1) — (cosgz — 1) + (cosgs — 1)
C3(q) = (costs — 1) — (cosgp — 1) + (cosgz — 1) — (cosqs — 1)

TakingC = 1/4/2 as well asS+C = 0, and defining:

s4(Q) = —singy —singz —singz —singy
Ca(q) = (cosop — 1)+ (cosgz — 1) + (cosgz — 1) + (cosgy — 1)
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the p-translated Creutz action takes the form:
D(a) = ivusu(a) + H iyucu(a) ,
i [z
or in the scalar product notatiofy,x) = ¥, yuXu, one has:

D(q) =i(y,s(a)+c(a)) -
Using the following orthogonal matrices:

1 1-1-1 11-1-1

111 -1-11 111-1-11
a:=_ , bi=—2 ,

211 -11 -1 211-11 -1

-1-1-1-1 11 11

and noting that,
s=2as c=2b¢,

where
§=( sinqy, singy, sings, sings )", &= (cosq;—1, cosgp—1, cosgz—1, cosgs—1)T ,
then, the rescaled action by a factor of 2 can be written in the form:

D(q) :=i(y,a8(q) +b&(q)) =i(a"y,5(q) +a'b&(q)) .

Denoting,
-11 1 1
S ,
211 1 -11
1 1 1-1
we get:

D(q) =i(a"y,8(p) + a&(a)) -
It is easy to show thai' y are Dirac gamma matricés:andPg

{(aTV)Hv (aTV)v} = z AopdaviYp, Yo} = ZZapuapv =20,y -
po 5

Therefore, the factaa’ can be dropped. This way, the final expression has the form:

D(a) = i(y,8a)) +i(y,&))
- Z iyy sin qu+z i;/u(cosq,,—l),
m [

wherey = ay are again Dirac gamma matrices for the same reason as above. Noting that,
z Yu = z yy=2r,
f a
we get another expression for the fermion action:
D(p):z iy sin qp+z iy, cosqy —2il . (2.1)
[z L

This expression was elegantly derived by Creutz in terms of a linear cotitrinat two naive
actions plus the-2il" term, the latter cancelling exactly one naive action at the zerBs[fif.
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2.1 TheDirac Operator in Position Space

In order to write down the Dirac operator in position space, we expresadh@entum space
operator in terms of forward and backward propagating plane weesinde'Pu:

D(p) = m+122 (Vi —iv) €P + (v, +iyy) e '] —2ir
[

where we have added the bare fermion masg,hen, by making the formal substitutiop, — dy,
one gets:

D— m]l+i2% [~ i) &+ (i) ] —2ir

where the shift operatore: ande %, are defined by their action on a Dirac fieldx):
e yp(x) = Y(xEafl) .
Hence, the position space Dirac operator can be implemented using the fgll@nns:

e the on-site termml — 2il") ¢x.
e the forward hopping termiz(;/u —iyy)Y(x+afl).

e the backward hopping terné,(y/p +iyy)P(x—afl).
As usual, the gauge fields are introduced by requiring the hopping ternesgauge covariant.

3. Minimally Doubled Actions and Hypercubic Symmetry

Shortly after our proposal, it was noted that the lattice action given aboke the full sym-
metry of the hypercubic grouf][7]. The reason is that the action picksjgsaal direction the main
diagonal of the hypercube. Hence, in the presence of gauge fielddtitar, there is a dimension
five operator that enters the action, namglyd2y (Bl

As we pointed out earlier, the idea of minimally doubled action is not new. Ttienacof
Karsten and Wilczek pick the time axis as a special direction. Again, the Idle &ill hypercubic
symmetry introduces extra relevant terms in the interacting €h§E [5, 7].

Since a minimally doubled action has necessarily two zeros, the line that joins dheetw
ros in the Brillouin zone defines a special direction. Hence, independehtyspecific action,
the hypercubic symmetry will be broken. In principle, there is nothing spabiaut a hypercu-
bic action. The authors of referend¢ [8] propose a ‘hyperdiamoctibra which generalises the
graphene structure in five dimensions. However, the resulting action hastham two zeros. It
is an interesting question whether it is possible to have a minimally doubled actioh ddes not
break the original symmetry of the action.

4. A Preliminary Numerical Test

So far, the present formulation has only been tested at tree level pituriheory [P]. It
has been shown that the scaling violations are of the dddaf), as expected. Here, we present
preliminary results on the pion mass calculations on tei82@attices generated with the SU(3)
Wilson gauge action g8 = 6.
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4.1 The Quark Propagator

The quark propagatog, is computed as the solution of linear systeg= 0, whered is taken
to be a point source. Since the massless operator is antihermitian, it is easytha® is normal,
i.e. D*D = DD*. This property, which is shared by the Kogut-Susskind operptpr li2jys one to
use optimal inversion algorithms. Indeed, the Conjugate Gradients algonitiNoronal Equations
(CGNE) and the Conjugate Residual (CR) algorithm are optimal Krylovmadesbased algorithms
for staggered fermion$ J1L0]. Hence, the minimally doubled fermion predéetes shares the same
numerical advantages, while describing two species of fermions instefmdirof For the quark
propagator computations we have used the CGNE algorithm.
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Figurel. The scaling law of CGNE iterations with the bare quark mass. The criticalexy
is computed to be= 0.92(4).

While optimal, this algorithm suffers from the critical slowing down, as all Kwydoibspace-
based inversion algorithms do. Thus, the the number of CGNE iterationscto adaxed accuracy
is expected to scale like 1/(am)* with the inverse quark masam. Our data suggest a critical
exponent valug = 0.92(4), which is clearly smaller than 1, the expected value for Wilson fermions
[£T).

In the present calculations, we haven’t made any effort to acceleeatavérsion. The even-
odd acceleration does not work for these type of fermions since thzgeotesn does not commute
with the hopping term.

4.2 The Pion Propagator and the Pion Mass
Zero momentum pion propagators are computed using the vacuum expecédties of cor-
relation functions of pion interpolating fieldg(x) ys @ (x):

G(t) = Y <0[P(X)yY(x)P(0)ysY(0)0>
X

= 3 9(x.0)°g(x.0)
X
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For larget the right hand side can be fitted to the ground sate ansatz:
G(t) ~ cosham(T/2+1-t),

where periodic boundary conditions are applied dnd the lattice extension along the fourth
diection. We computed effective masses by inverting the expression:

G(t+1) cosham(T/2—t)

G(t)  cosham(T/2+1-t)’

where the the symmetry with respect to the lattice mid pbjf2+ 1 is enforced. In figure 2 we plot
the pion effective mass squared at different time slices for quark marsse$.01,0.02,0.03,0.04, 0.05.
Since effective masses show a flat behaviour one can pick the valggvainatime slice. We have
selected the values at the last time slice which display the largest errors.
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Figure 2. Pion effective masses squared for different quark masses.

In figure 3 we show the behaviour of the pion mass squared againstahie mass. The full
line is the least squares fit of the data which gives the result:

(amy)? = 0.007(17) + 3.5(4) (am) .

The figure shows the extrapolated pion mass at zero quark m@eg(17), which in dimensionful
units gives a pion mass;; ~ 170(200) MeV. Here, we have assumed that, at this coupling, the
inverse lattice spacing is 2 GeV. At this accuracy, the pion mass is consistent to zero.

To conclude, we have reviewed the recent efforts to revive the minimalipldd actions.
We have made a preliminary calculation of the pion mass on a SU(3) backiynbich behaves
as predicted by the chiral perturbation theory within the statistical erra. bahe final results
of this ongoing calculation will reveal any possible discrepancy to the lghét@urbation theory.
One notices, however, that the invested computational effort to obtaie tegglts is much smaller
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than for the Ginsparg-Wilson fermions. Therefore, we conclude thatthinally doubled action
presented here is worth exploring in the future.

021 q

0.15 q

0.1r- q

(atmn)2

I I I I I I
0 0.01 0.02 0.03 0.04 0.05
am

Figure 3. Testing chiral perturbation theory with minimally douthlactions: pion mass squared against
the bare quark mass. At zero quark mass, the extrapolatadrass isn; ~ 170(200).
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