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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

1. Introduction

Over the last thirty years, a considerable number of attempts have been made to construct
lattice supersymmetric models [1, 2, 3]. However, none of them have been fully successful. To
see an obstacle in realizing supersymmetry on a lattice, let us consider supersymmetry invariance
in the continuum, which may be best seen in the superfield formulation. We first note that an
infinitesimal supersymmetry transformation for any superfield X(x,θ) is essentially written in the
form δεX(x,θ) = ε(∂θ + θ∂x)X(x,θ), where ∂x and ∂θ denote the derivatives with respect to the
spacetime coordinate x and the grassmann coordinate θ , respectively, and ε is an infinitesimal
grassmann parameter. Then, the action invariance under the transformation can easily be shown as

S(Φ+δεΦ)−S(Φ) ≡
∫

dx
∫

dθ
{
L (Φ(x,θ)+δεΦ(x,θ))−L (Φ(x,θ))

}
=

∫
dx

∫
dθ δεL (x,θ)

= 0 , (1.1)

where Φ stands for a superfield. The last equality immediately follows from the fact that
∫
dx ∂x = 0

and
∫
dθ ∂θ = 0.

In lattice formulation, x, ∂x and
∫
dx should be replaced by n, ∇ and ∑n, respectively, where n

and ∇ denote a position and a difference operator on a lattice. Since ordinary difference operators
satisfy the relation ∑n ∇ = 0, most of the properties in the continuum turn out to hold even on a
lattice. A nontrivial step, however, exists. To go from the first line to the second in eq.(1.1), we
need a Leibniz rule for the supersymmetry transformations, i.e. δε(ΦΨ) = (δεΦ)Ψ + Φ(δεΨ).
The Leibniz rule is trivially satisfied in the continuum but not on a lattice. This is because the
supersymmetry transformations include spacetime derivatives, which should be replaced by some
difference operators on a lattice, and naive difference operators are known to violate the Leibniz
rule [4, 5, 6, 7]. Thus, it will be important to clarify the question whether the Leibniz rule can be
realized on a lattice.

Our answer is negative. In the next section, we give a proof of the no-go theorem [8]:

No-Go Theorem. It is impossible to construct a lattice field theory in an infinite lattice volume with
any nontrivial field products and difference operators that satisfy the following three properties: (i)
translation invariance, (ii) locality and (iii) Leibniz rule.

We, however, propose a way to escape from the no-go theorem and present a lattice formulation
equipped with a Leibniz rule in Section 3. Then, we explicitly construct a lattice model of N = 2
superesymmetric quantum mechanics and discuss the full exact supersymmetric properties from
various points of view in Section 4. Section 5 is devoted to summary and discussions.

2. A Proof of the No-Go Theorem

In this section, we present a proof of the no-go theorem stated in the Introduction. In order to
analyze a Leibniz rule on a lattice, we must generalize a product between fields and a difference
operator on a field. A lattice field product between ϕn and ψn and a difference operator on a field
ϕn are defined, respectively, as
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(ϕ ·ψ)n ≡ ∑
l,m

Clmn ϕlψm , (Dϕ)n ≡ ∑
m

Dmn ϕm , (2.1)

where the indices l,m,n denote positions on a lattice of an infinite size.
The coefficients Clmn and Dmn cannot be arbitrary. The difference operator for a constant

field should vanish, i.e. ∑m Dmn = 0. We require that they are translationally invariant, such that
Clmn = C(l−n,m−n) and Dmn = D(m−n). We further require the field product and the difference
operator to be local. The locality property is important in constructing local field theories after the
continuum limit. To make the locality manifest, we define Fourier transform of the coefficients
C(k, l) and D(m) by

Ĉ(v,w) ≡ ∑
k,l

C(k, l)vk wl , D̂(z) ≡ ∑
m

D(m)zm , (2.2)

where v,w,z are S1-variables given by v = eip,w = eiq,z = eir (0 ≤ p,q,r < 2π). We note that the
condition ∑m Dmn = 0 can be replaced by an “initial” condition

D̂(1) = 0 . (2.3)

A crucial observation to prove the no-go theorem is that the locality of the field product and the
difference operator allows v,w,z to extend to an annulus domain 1− ε < |v|, |w|, |z| < 1 + ε with
a positive constant ε and then Ĉ(v,w) and D̂(z) can be regarded as holomorphic functions on the
annulus domain [8].

We are now ready to present a proof of the no-go theorem. The Leibniz rule D(ϕ ·ψ) =
(Dϕ) ·ψ + ϕ · (Dψ) can be translated into a relation between the field product and the difference
operator as

∑
k

ClmkDkn = ∑
k

CkmnDlk +∑
k

ClknDmk . (2.4)

In terms of the holomorphic functions Ĉ(v,w) and D̂(z), the above relation can be rewritten into a
simple form

Ĉ(v,w)
(

D̂(vw)− D̂(v)− D̂(w)
)

= 0 . (2.5)
It follows that

D̂(vw)− D̂(v)− D̂(w) = 0 (2.6)

on a restricted domain with Ĉ(v,w) ̸= 0. We can, however, show that the relation (2.6) holds on
the annulus domain without the constraint Ĉ(v,w) ̸= 0 by virtue of the holomorphy. To see this, we
first note that since Ĉ(v,w) is holomorphic, Ĉ(v,w) can vanish at most at isolated points, otherwise
Ĉ(v,w) should vanish identically due to the identity theorem on holomorphic functions. It turns out
that the equation (2.6) holds on the whole annulus domain without the condition Ĉ(v,w) ̸= 0, again
due to the identity theorem on holomorphic functions.

A general solution to eq.(2.6) is easily found to be of the form

D̂(w) = β logw . (2.7)

The coefficient β , however, has to vanish in order for D̂(w) to be holomorphic because the log-
arithmic function logw is not holomorphic on the annulus domain and hence is not local. Thus,
we conclude that there is no nontrivial difference operator with the properties of (i) translation
invariance, (ii) locality and (iii) Leibniz rule. This completes the proof.
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We would like to make a few comments on the locality. Our proof implies that if we allow the
difference operator to be non-local (but still the field product to be local), the difference operator
(2.7) is a unique solution, which is known as a SLAC-type derivative [4]. On the other hand, if we
allow the field product to be non-local, we can obtain local difference operators which are solutions
to eq.(2.5). For example, if we take Clmn = c (=constant), which is highly non-local, then we find
Ĉ(v,w) = (2πi)2cδ (v− 1)δ (w− 1). It then follows that any (local) difference operators with the
property (2.3) satisfy the equation (2.5) trivially. Another example will be found in Ref.[5]

3. Escape from the No-Go Theorem

Although we have proved a no-go theorem about the Leibniz rule on a lattice, it is still worth-
while continuing to search for local difference operators and field products satisfying the Leibniz
rule because they will make it possible to construct lattice models with the full exact supersymme-
try.

A way to escape from the no-go theorem may be to introduce multi-flavors in the system.1 A
field product and a difference operator are naturally extended as

(ϕ ·ψ)c
n ≡ ∑

l,m

N

∑
a,b=1

Cabc
lmn ϕ a

l ψb
m , (Dϕ)b

n ≡ ∑
m

N

∑
a=1

Dab
mn ϕ a

m , (3.1)

where a,b,c denote flavor indices. A Leibniz rule in multi-flavor systems can be expressed as

∑
k

N

∑
d=1

Cabd
lmk Ddc

kn = ∑
k

N

∑
d=1

Cdbc
kmn Dad

lk +∑
k

N

∑
d=1

Cadc
lkn Dbd

mk . (3.2)

The translation invariance and the locality for Cabc
lmn and Dab

mn are defined in the same way as in single
flavor systems, and lead to the holomorphic functions

Ĉabc(v,w) ≡
∞

∑
l,m=−∞

Cabc(l,m)vlwm, D̂ab(z) ≡
∞

∑
m=−∞

Dab(m)zm. (3.3)

One might hope that N-flavor systems could evade the no-go theorem proved in one-flavor
systems but the theorem turns out to still hold. This is because the proof can reduce to the one-
flavor case by diagonalizing D̂ab(z) such that D̂ab(z) = δ ab D̂a(z). Thus, a multi-flavor extension
seems not to work to solve our problem. However, there exists a loophole to escape from the no-go
theorem. A key observation is that a linear combination of an infinite number of holomorphic func-
tions is not necessarily holomorphic. The holomorphy of Ĉabc(v,w) and D̂ab(z) is not necessarily
preserved in diagonalizing D̂ab(z) with infinite flavors, and hence the proof for one-flavor cannot
be applied to an infinite number of flavors.

In fact, we find a solution to the equation (3.2) [8]:

Cabc
lmn = δl−n,b δn−m,a δa+b,c , Dab

mn = d(a−b)
(
δm−n,a−b −δm−n,−(a−b)

)
, (3.4)

where d(a−b) is an arbitrary function of a−b. The characteristic features of the above solution are
listed below: They are translationally invariant because Dab

mn (Cabc
lmn) depends only on m− n (l − n

and m−n). They are local because the functions

Ĉabc(v,w) = δa+b,c vb w−a , D̂ab(z) = d(a−b)
(
za−b − z−(a−b)) (3.5)

1Another approach to restore a Leibniz rule with a mild non-commutativity has been proposed in Ref.[9].
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are holomorphic on the annulus domain. The expressions (3.4) imply nontrivial connections be-
tween the lattice sites and the flavor indices and the necessity of an infinite number of flavors.
We could diagonalize D̂ab(z) given in eq.(3.5) but the resulting expression turns out to become
non-holomorphic. Thus, we cannot apply the previous proof in the present case, as mentioned
before. The solution (3.4) is local in the space direction, as they should be, but they are, in some
sense, “non-local” in the flavor direction. Thus, one might say that the non-locality problem can be
resolved by transferring the non-locality in the space direction to the flavor direction.

The expressions (3.4) may become more tractable by writing them into a matrix form. A
lattice field ϕ a

n will be replaced by a matrix Φi j with the identification of a = i− j and n = i+ j. The
difference operator (Dϕ)a

n turns out to be a commutator [d,Φ]i j, where the matrix d is given by di j ≡
d(i− j). The field product (ϕ ·ψ)a

n is found to be just the product of matrices, (ΦΨ)i j = ∑k ΦikΨk j.
The Leibniz rule D(ϕ ·ψ) = (Dϕ) ·ψ + ϕ · (Dψ) is rather trivial in the matrix representation and
is replaced simply by a trivial commutator relation [d,ΦΨ] = [d,Φ]Ψ + Φ[d,Ψ]. The summation
over the lattice sites and the flavor indices is replaced by the trace of matrices.

4. N = 2 SUSY QM on the Lattice

Since we have succeeded to find a local difference operator and a local field product equipped
with the Leibniz rule, we can construct supersymmetric lattice models. In this section, as an exam-
ple, we present a lattice model of N = 2 supersymmetric quantum mechanics, and discuss various
supersymmetric properties. The details will be reported in a forthcoming paper.

Our lattice action of N = 2 supersymmetric quantum mechanics equipped with the tools de-
veloped in the previous section is2

S = tr
[ 1

2
[d,q]2 − 1

2
F2 + ψ̄[d,ψ]+λFq2 +λ

(
ψ̄qψ + ψ̄ψq

)]
, (4.1)

where d is an anti-hermitian matrix and q,F are bosonic matrices and ψ, ψ̄ are fermionic ones. We
should be careful about the order of the fields because they are represented by matrices. It is easy
to see that the lattice action is invariant under the supersymmetry transformations

δq = εψ̄ − ε̄ψ , δψ = ε(−[d,q]+F), δψ̄ = ε̄([d,q]+F), δF = ε[d, ψ̄]+ ε̄[d,ψ], (4.2)

where ε and ε̄ are infinitesimal grassmann parameters (but not matrices). The invariance implies
that the action possesses the full exact N = 2 supersymmetry. This is the most important property
of our model. We can rewrite the lattice action (4.1) in the superfield formulation, such that

S =
∫

dθ̄dθ tr
[ 1

2
(D̄Φ)(DΦ)+

λ
3

Φ3
]
, (4.3)

where Φ and D, D̄ denote the superfield and the supercovariant derivatives. Furthermore, the action
can be written into a Q-exact form [11]

S = Q̄Q tr
[ 1

2
ψ̄ψ +

λ
3

q3
]

= −QQ̄ tr
[ 1

2
ψ̄ψ +

λ
3

q3
]
, (4.4)

2The action was originally found in Ref.[10].
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where Q and Q̄ denote the supercharges, which generate the supersymmetry transformations (4.2).
The other interesting feature is that the action has two kinds of the Nicolai mappings [12, 13, 14]
given by

ξ = [d,q]+λq2 , η = −[d,q]+λq2 . (4.5)

In terms of the two Nicolai mappings, the on-shell action can be expressed in two ways:

Son−shell =
1
2

ξi jξ ji + ψ̄i j
∂ξ ji

∂qkl
ψkl =

1
2

ηi jη ji + ψ̄i j
∂ηlk

∂qi j
ψkl . (4.6)

It follows from the above expressions that each of the two Nicolai mappings ξ and η are found to
be connected with one of the two supercharges of the N = 2 supersymmetry [15, 16].

We should make a comment on the doubling problem. The lattice action (4.1) unfortunately
suffers from the doubling in both the spectrum of bosonic and fermionic variables. We can, how-
ever, add a supersymmetric Wilson term to the lattice action (4.1) to avoid the doubling problem.

It should be noting that the lattice action is exactly supersymmetric even for a finite size of
the matrices. This does not, however, contradict the no-go theorem because the theorem has been
proved only for an infinite lattice volume. In fact, the locality is obscure for a finite lattice.

5. Summary and Discussions

We have proved the no-go theorem that it is impossible to construct a lattice field theory in an
infinite lattice volume with any field products and difference operators that satisfy the following
three properties: (i) translation invariance, (ii) locality and (iii) Leibniz rule. We then proposed
a way to escape from the no-go theorem by introducing infinite flavors and presented a matrix
realization of the lattice formulation equipped with the Leibniz rule. In terms of the tools in the
matrix realization, we constructed a lattice model of N = 2 supersymmetric quantum mechanics
and discussed various interesting properties. One of the remarkable features is that the model
realizes the full exact supersymmetry but most of known supersymmetric lattice models can, in
contrast, possess supersymmetry at most partially.3

Since our lattice models include an infinite number of flavors, we need to reduce the number
of flavors in the continuum limit at least at low energies. An attractive idea is to use an analogy
between infinite flavors of our models and Kaluza-Klein modes on extra dimensions. If we can add
“KK mass” terms in our lattice actions in a supersymmetric way, only finite degrees of freedom
could survive at low energies.

In the previous section, we have presented a 0+1-dimensional supersymmetric lattice model.
The extension to higher dimensions will be straightforward for Wess-Zumino type models. In fact,
we have succeeded to construct lattice models of d = 2 N = 2 and d = 4 N = 1 Wess-Zumino
models in our formulation. The introduction of gauge fields is, however, less trivial. Our lattice
models have a genuine non-commutative nature and it seems to be natural to embed vector indices
(as well as spinor indices) in matrices.

3Other lattice models that realize exact supersymmetry have been proposed in Ref.[9]. However, a breakdown of
the supersymmetry at the quantum level was reported [17]. Another interesting idea to construct lattice models with
an exact fermionic symmetry has been presented in Ref.[18], though the relation between the fermionic symmetry and
supersymmetry is unclear.
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An advantage of our lattice formulation is that the lattice models are exactly supersymmetric
even for a finite lattice size, and hence numerical simulations can be done.

The full details of the supersymmetric lattice models given in Section 4 and further progress
will be reported in a forthcoming paper.
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