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1. Introduction

The method of largeN continuum reduction [1, 2] forSU(N) gauge theory allows for the
calculation of the infinite volume, infiniteN limit of certain physical quantities using volumes
reduced to a small physical size. Numerical estimates [1, 2] of the physicalcritical size above
which continuum reduction holds indicate that this method can be used to produce practical results.
The chiral condensate [3] and the pion decay constant[4] were calculated in the largeN limit
in four dimensions using continuum reduction. In this paper, we show that the method can be
extended beyond bulk quantities and that it also produces reliable results for quantities with space-
time dependence such as the heavy quark potential, from which the string tension can be extracted.
Invoking largeN continuum reduction, we included Wilson loops larger than the size of the lattice.
The results validate the method of continuum reduction for calculating quantitiesbased on the
space-time dependence Wilson loops.

A precise calculation of the string tension in three dimensionalSU(N) gauge theories has
been performed withN up to 8 on large lattices [5]. We present a complementary calculation with
N = 47 on 53 lattices using continuum reduction. The calculation of Ref. [5] used correlation
functions of smeared Polyakov loops to extract the string tension. After extrapolating toN = ∞ and
to the continuum, the result was

√
σ

g2N
= 0.1975±0.0002−0.0005 (1.1)

whereg is the gauge coupling. This has to be compared with the analytical calculation in [7],
namely, 1√

8π ≈ 0.1995. Although the two results are not in perfect agreement, the main observation
is that the approximations used in the analytical calculation are very well motivated.

Our use of continuum reduction to directly compute theN = ∞ limit of the string tension by
working at large enoughN so that the finiteN corrections are smaller than the numerical errors
gives [6] √

σ
g2N

= 0.1964±0.0009. (1.2)

This result and that of (1.1) are consistent at the level of their one sigma errors. This level of
agreement is, in turn, consistent with neither the largeN extrapolation of Ref. [5] nor the volume
reduction of the present calculation having unexpected errors. While both of the numerical results
lie below the analytical estimate, the discrepancy is relatively small. Thus the numerical evidence
that the analytical result is an excellent first approximation that captures much of the physics re-
mains strong.

The paper is organized as follows. We explain how we use smeared Wilson loops to compute
the string tension in Section 2. The lattice results for the string tension along with the continuum
extrapolation are also presented in this section. An intermediate step in our calculation is the
dimensionless ground state string energym(k). In Section 3, we show results form(k) at one
fixed lattice coupling to illustrate its behavior as a function ofk and how it is used to extract the
string tension. We also show thatm(k) is unaffected by the smearing parameter. We illustrate the
extraction ofm(k) at one fixed coupling in Section 4. Here we show how the smearing parameter
affects the overlap with the ground state. The main result in this paper is obtained usingN = 47.
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We show that the finiteN and finite volume corrections are small at this value ofN in Section 5.
We explain why this method is preferred over the Creutz ratio in Section 6.

2. String tension using Wilson loops and continuum reduction

ConsiderSU(N) Yang-Mills theory on a periodic lattice with the standard Wilson gauge ac-
tion. The method of [5] is to measure the string tension using correlations of Polyakov loops with
separationt that wind around a space direction. Continuum reduction [1, 2] implies that the large
N Yang-Mills theory in a continuum box of sizel3 is independent ofl as long asl > lc = 1/Tc with
Tc being the deconfining temperature. One should be able to compute expectationvalues of Wilson
loops of arbitrary size on anl3 continuum box using folded Wilson loops and extract the string
tension. To implement this approach to the three-dimensional Yang-Mills theorystring tension, we
use the following procedure:

• We fix the lattice size toL3. We useL = 5 for the most part and only useL = 4 to verify
reduction.

• We fix N so that finiteN corrections are small. We setN = 47 and show using one instance
that finiteN corrections are small atN = 47.

• We pick an appropriate range of lattice couplingb = 1
g2N .

– b cannot be too small since we have to be away from the bulk transition on the lattice
associated with the development of gap in the eigenvalue distribution of the plaquette
operator [8]. Therefore, we pickb ≥ 0.6.

– b cannot be too big since we have to be below the deconfining transition forL = 5.
Therefore, we pickb ≤ 0.8 [9].

• We use smeared space-like links and unsmeared time-like links.

• We use the tadpole improved couplingbI = be(b) to set the scale and considerK×T Wilson
loopsW (K,T ) with 1.5 < K

bI
, T

bI
< 12.5. This amounts to expectation values of Wilson loops

that range from 0.82 to 2·10−4.

• KeepingK fixed, we fit

lnW (k, t) = −a−m(k)t; (2.1)

wherek = K
bI

andt = T
bI

are the dimensionless extent in the space and time direction respec-
tively. m(k) is the dimensionless ground state energy. This fit assumes that there is a perfect
overlap with the ground state. Note thata should be zero sinceW (k,0) = 1. Any small
deviation from zero seen in the fit is due to the contribution from excited states.

• Finally,m(k) is fit to σb2
I k+c0bI +

c1
k . The combination

√
σbI is plotted as a function ofb−2

I .
We expect lattice spacing effects to lead off asb−2

I in Yang-Mills theories and this is indeed
the case in Fig. 1. The continuum limit extracted from this figure was quoted in Eqn.(1.2).
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Figure 1: The string tension is plotted as a
function of the lattice spacingb−1

I . The fit
is an extrapolation to the continuum.
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Figure 2: The ground state energym(k) as
a function ofk for the coarse and fine lattice
spacings considered here.

The use of smeared links improves the measurement of Wilson loops. They enhance the
overlap of the space-like sides of the Wilson loops with the ground state. Thisincreases the signal
relative to the fluctuations and simplifies thet behavior of the loops [10]. One step in the iteration
takes one from a setU (i)

k (x1,x2, t) to a setU (i+1)
k (x1,x2, t). Before reunitarization, the weight of

U (i)
k (x1,x2, t) is (1− f ) while that of each staple isf /2. The time-like links,U3(x1,x2, t), are not

smeared, and the smearing only involves space-like staples. There are twoparameters, namely, the
smearing factorf and the number of smearing stepsn. Only the productτ = f n matters, andf
plays the role of a discrete smearing step. For a givenτ, the overlap of the smeared loop with the
ground state does not depend onf as long as it is small. But the overlap of the smeared loop with
the ground state does depend uponτ. We set the value of the smearing parameter toτ = 2.5 by
choosingf = 0.1 andn = 25. To study the effect of varyingτ, we also considerτ = 1.25 (f = 0.05
andn = 25) at one coupling.

3. Extraction of string tension

SU(N) gauge fields were generated on a 53 periodic lattice using the standard Wilson action.
One gauge field update of the whole lattice [2] is one Cabibbo-Marinari heat-bath update of the
whole lattice followed by oneSU(N) over-relaxation update of the whole lattice. A total of 1500
such updates were used to achieve thermalization. Measurements were separated by 10 such up-
dates and all estimates are from a total of 832 such measurements. Errors inall quantities at a fixed
b andN were obtained by jackknife with single elimination.

The ground state energym(k) obtained as a function ofk = K
bI

is fit to

m(k) = σb2
I k + c0bI +

c1

k
(3.1)

We expectσb2
I to approach a finite value in the continuum limit (bI → ∞). The three parameter fit

of m(k) as a function ofk is shown in Fig. 2.

4. Extraction of m(k)

The dimensionless ground state energym(k) is extracted at a fixedk by fitting lnW (k, t) to

4
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Figure 3: Plot of lnW (k, t) as a function of
t for seven different values ofk at b = 0.8
with τ = 2.5.
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Figure 4: Plot of lnW (k, t) as a function of
t for seven different values ofk at b = 0.8
with τ = 1.25.

−a−m(k)t as discussed in Sec. 2. Whilem(k) should be independent of the smearing parameter
τ = f n, the value ofa is expected to depend onτ.

We will useb = 0.8 as the coupling to illustrate the extraction ofm(k). Figure 3 and Fig. 4
show the performance of the fit for two different values ofτ, namely, 2.5 and 1.25 respectively.
Thesolid circlesshow the data points without errors. Thesolid linesshow the fit of the data. Seven
values oft were used to fit the data at onek, and data at seven different values ofk were fitted. This
amounted to all Wilson loops from 1×1 to 7×7 on the 53 lattice. The fit parameters are shown in
Table 1 and Table 2. Only the average values of the fit parameters are listed.

Investigation of Table 1 and Table 2 shows thatm(k) does not depend onτ. There is a small
difference in the two values ofm(k) at a fixedk for the two different values ofτ if k is large.
Additional analysis shows that this difference is within errors. Furthermore, the fitted values of
σb2

I for the two different values ofτ are the same within errors.

k 1.62 3.23 4.85 6.47 8.08 9.70 11.31
a 0.001 0.003 0.009 0.019 0.055 0.047 0.071

m(k) 0.133 0.218 0.286 0.347 0.399 0.464 0.517

Table 1: Fit parameters corresponding to the fit lnW (k, t) = −a−m(k)t for seven different values ofk at
b = 0.8 with τ = 2.5.

k 1.62 3.23 4.85 6.47 8.08 9.70 11.31
a 0.002 0.012 0.029 0.054 0.102 0.114 0.144

m(k) 0.133 0.218 0.287 0.349 0.404 0.468 0.526

Table 2: Fit parameters corresponding to the fit lnW (k, t) = −a−m(k)t for seven different values ofk at
b = 0.8 with τ = 1.25.

The values ofa in Table 1 and Table 2 do show a variation withτ andk. Since a smaller
value ofτ implies less smearing, the overlap with the ground state is less for smallerτ, and this
results in a larger value ofa at smallerτ. The value ofa is very close to zero for smallk indicating
excellent overlap with the ground state for the chosen value ofτ. As k increases, the length of the
loop increases and the perimeter divergence has a stronger effect. This results in a larger value of
a ask increases at a fixedτ.
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Figure 5: The ground state energym(k) as
a function ofk for five different values ofN
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Figure 6: The ground state energym(k) as
a function ofk on two different lattices at
b = 0.8.

5. Finite N effects

Two issues need to be addressed with the analysis performed so far. We have fixed our value
of N assuming finiteN effects are small. IfN is not large enough, finiteN effects need to be
addressed. In addition, we also have to address finite volume effects since continuum reduction is
valid only in theN → ∞ limit.

We expectm(k) to have a fixed limit asN → ∞ at a fixedk, L, b andτ. Indeed, this is the
case as shown in Fig. 5 where the results form(k) as a function ofk are shown forb = 0.8 with
τ = 2.5 on 53 lattice. All three fit parameters are consistent within errors all the way fromN = 23
to N = 47. The only glitch one sees is atk ≈ 8. This corresponds toK = kbI = 5, which is the
linear extent of the lattice. One can argue that there are larger finiteN effects at strong coupling for
K = L. Since the fit ofm(k) involves several values ofk, the larger effect at this particular value of
k is diminished in the extraction ofσb2

I .
Since finiteN effects can be ignored atN = 47, we also expect there to be no appreciable finite

volume effects at this value ofN. This point is illustrated in Fig. 6 where the result form(k) is
plotted atb = 0.6 andτ = 2.5 on 43 and 53 lattice. We usedb = 0.6 for this comparison since we
have to be in the confined phase on 43 lattice. Figure 6 shows that the two values ofm(k) at a fixed
k are consistent with each other within errors. The same is the case for the fitparameterσb2

I . This
is not the case forc1 andc0bI , and this is probably due to a three parameter fit using only five data
points. Sub-leading coefficients are expected to depend sensitively on the data points. Since we are
primarily concerned with the value of the string tension in this paper and since all our results are
based on data taken on 53, we expect the final result to be free of finiteN and finiteL errors.

6. Creutz ratio

It is natural to ask how the Creutz ratio [11],

χ(K,J) = − ln
W (K,J)W (K −1,J−1)

W (K,J−1)W (K −1,J)
, (6.1)

performs as an observable from which to extract the string tension. If wewere to use Creutz ratios,
we would have smeared all links using all staples. But one can still ask how the Creutz ratio behaves
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with the asymmetrically smeared links. TheK ×K square Creutz ratios do not converge well asK
increases. It is possible the situation would be different if we had smearedall links.

Each data point in a Creutz ratio is obtained using only four different Wilsonloops,i.e. four
of the data points in Fig. 3. This is quite different from the analysis in this paper. Seven different
Wilson loops in Fig. 3 are used to extract onem(k) point in Fig. 2, and the loops used for different
k form independent sets. Then them(k) are fit to determine the string tension. Both folded and
unfolded loops contribute together. This is the main reason we succeeded inextracting the string
tension using the range of Wilson loops considered here. To extract the string tension using Creutz
ratios, larger loops and therefore larger statistics and possibly largerN would be needed.
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