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1. Introduction

In this talk, we present the main idea in [1] and provide a sampling of the numerical results.
The Wilson loop operator,W , is a unitary operator for SU(N) gauge theories and can be used

as a probe of the transition from strong coupling to weak coupling. Large (area) Wilson loops are
non-perturbative and correspond to strong coupling. Small(area) Wilson loops are perturbative
and correspond to weak coupling.

The probe is defined as
WN(z,b,L) = 〈det(z−W )〉 (1.1)

and is the characteristic polynomial associated with the operator. W is the Wilson loop operator,
z is a complex number,N is the number of colors,b = 1

g2N is the lattice gauge coupling andL is
the linear size of the square loop.〈· · ·〉 is the average over all gauge fields with the standard gauge
action.

The eigenvalues ofW are gauge invariant and so is the characteristic polynomial. The eigen-
values lie on the unit circle and all of them will be close to unity for small loops. The eigenvalues
will spread uniformly over the unit circle for large loops. The characteristic polynomial exhibits a
transition atN = ∞ whenL → Lc(b). This is a physical transition sinceLc(b) will scale properly
with the coupling,b, as one approaches the continuum limit.

The scaling function in the double scaling limit can be derived for two dimensional largeN
QCD [1]. We have numerically shown that three dimensional QCD falls into the same universality
class [1].

2. Two dimensional QCD and a multiplicative matrix model

Two dimensional gauge theory on an infinite lattice can be gauge fixed so that the only vari-
ables are the individual plaquettes and these will be independently and identically distributed.
W = ∏n

j=1U j whereU js are the transporters around the individual plaquettes that make up the
loop andn = L2 is equal to the area of the loop. The measure associated withU j can be set to

P(U j) = N e−
N
2 Tr H2

j whereU j = eiεH j andε plays the role of gauge coupling. The dimensionless
area is given byt = ε2n which is kept fixed as one takes the limitn → ∞ andε → 0. This is called
the multiplicative matrix model [2]. In the continuum limit, the parametersb andL get replaced by
one parameter, which is denoted byt in the model, and the characteristic polynomial becomes

WN(z,b,L) → QN(z, t)

3. Average characteristic polynomial

Using a fermionic representation of the determinant, one can perform the integration overU j.
One can then perform the integration over the fermionic variables to obtain the following result for
the characteristic polynomial:

QN(z, t) =











√

Nτ
2π
∫ ∞
−∞ dνe−

N
2 τν2

[

z− e−τν− τ
2

]N
SU(N)

√

Nt
2π
∫ ∞
−∞ dνe−

N
2 tν2

[

z− e−tν− τ
2

]N
U(N)

(3.1)
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Integrating outν gives exact continuum polynomial expressions,

QN(z, t) =















∑N
k=0

(

N
k

)

zN−k(−1)ke−
τk(N−k)

2N SU(N)

∑N
k=0

(

N
k

)

zN−k(−1)ke−
tk(N+1−k)

2N U(N)
(3.2)

τ = t

(

1+
1
N

)

(3.3)

4. Heat-kernel measure

The result forQN(z, t) is consistent with the heat-kernel measure forW :

P(W,τ)dW = ∑
R

dRχR(W )e−τC2(R)dW. (4.1)

R denotes the representation,dR is the dimension of the representationR andC2(R) is the second
order Casimir in the representationR. To see this, note that

QN(z, t) = 〈
N

∏
j=1

(z− eiθ j)〉 =
N

∑
k=0

zN−k(−1)kMk(t). (4.2)

If we now take the average,〈· · ·〉 over the heat-kernel measure, we get

Mk(t) = 〈 ∑
1≤ j1< j2< j3....< jk≤N

ei(θ j1+θ j2+...+θ jk )〉 = 〈χk(W )〉 = dke−τC2(k) =

(

N
k

)

e−
τk(N−k)

2N (4.3)

5. Zeros ofQN(z, t)

SinceW is a unitary operator, the zeros of det(z−W ) will lie in the unit circle. One can show
this remains true forQN(z, t) when the gauge group isSU(N). To see this, we rewriteQN(z, t) for
SU(N) as

ZN(z, t) = QN(z, t)(−1)N e
(N−1)τ

8 (−z)−
N
2 = ∑

σ1,σ2,...σN =± 1
2

eln(−z)∑i σie
τ
N ∑i> j σiσ j (5.1)

This is the partition function for a spin model with a ferromagnetic interaction for positiveτ .
ln(−z) is a complex external magnetic field. Therefore, the conditions for Lee-Yang theorem [3]
are fulfilled and all roots ofQN(z, t) lie on the unit circle for SU(N). This is not the case for U(N).

6. Weak couplingvsstrong coupling

The transition from weak coupling to strong coupling can be intuitively seen using the charac-
teristic polynomial,QN(z, t). In the weak coupling (small area) limit we havet = 0 andQN(z, t) =

(z−1)N . Therefore, all roots are atz = 1 on the unit circle. In the strong coupling (large area) limit
we havet = ∞ andQN(z, t) = zN +(−1)N . Therefore, all roots are uniformly distributed on the unit
circle.

QN(z, t) is analytic inz for all t at finiteN. But, this is not the case asN → ∞ and this leads to
a transition from weak to strong coupling in theN → ∞ limit.
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7. Phase transition in an observable – Durhuus-Olesen transition

There is a critical area,t = 4, such that the distribution of zeros ofQ∞(z, t) on the unit circle
has a gap aroundz = −1 for t < 4 and has no gap fort > 4 [2, 4]. To see this, we note that the
integral representation (3.1) is dominated by the saddle point, ν = λ (t,z), given by

λ = λ (t,z) =
1

zet(λ+ 1
2)−1

(7.1)

With z = eiθ andw = 2λ + 1, ρ(θ) = − 1
4π Re w gives the distribution of the eigenvalues ofW on

the unit circle.
The saddle point equation atz = −1 is

w = tanh
t
4

w (7.2)

showing thatw admits non-zero real solutions fort > 4.

8. Double scaling limit

As N → ∞, one can define a scaling region aroundt = 4 andz = −1 by

t =
4

1+ α√
3N

; z = −e(
4

3N )
3
4 ξ (8.1)

α andξ are the scaling variables that blow up the region neart = 4 andz = −1. We can show that

lim
N→∞

(

4N
3

)
1
4

(−1)Ne
(N−1)τ

8 (−z)−
N
2 QN(z, t) =

∫ ∞

−∞
due−u4−αu2+ξu ≡ ζ (ξ ,α) (8.2)

which is the scaling function in the double scaling limit associated with the characteristic polyno-
mial.

We hypothesize that this behavior in the double scaling limit derived for two dimensional large
N QCD is universal and should be seen in the largeN limit of 3D QCD, 4D QCD, 2D PCM and
other related models. The modified Airy function,ζ (ξ ,α), is the universal scaling function.

9. Large N universality hypothesis

We can now precisely state the continuum largeN universality hypothesis that can be numeri-
cally tested in relevant models.

Let C be a closed non-intersecting loop:xµ(s),s ∈ [0,1]. LetC (m) be a whole family of loops
obtained by dilation:xµ(s,m) = 1

m xµ(s),with m > 0. LetW (m,C (∗)) = W (C (m)) be the family of
operators associated with the family of loops denoted byC (∗) wherem labels one member in the
family. Define

ON(y,m,C (∗)) = 〈det(e
y
2 + e−

y
2W (m,C (∗))〉 (9.1)

Then our hypothesis is

lim
N→∞

N (N,b,C (∗))ON

(

y =

(

4
3N3

)
1
4 ξ

a1(C (∗)) ,m = mc

[

1+
α√

3Na2(C (∗))

]

)

= ζ (ξ ,α)

(9.2)
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Figure 1: Extrapolation to the continuum limit of the critical area.

10. Numerical test of the universality hypothesis – 3D largeN QCD

We use standard Wilson gauge action. The lattice couplingb = 1
g2N has dimensions of length.

We use square Wilson loops of linear lengthL. We changeb to generate a family of square loops
labeled byL. While doing this, we need to keep 0.42 < b < b(V ) whereV is the lattice volume
assumed large enough for largeN continuum reduction to hold in the confined phase [5, 6]. We
use smeared links in the construction of the Wilson loop operator to avoid corner and perimeter
divergences.

We obtainbc(L), a1(L) anda2(L) such that

lim
N→∞

N (b,N)ON

(

y =

(

4
3N3

)
1
4 ξ

a1(L)
,b = bc(L)

[

1+
α√

3Na2(L)

]

)

= ζ (ξ ,α) (10.1)

This is done by fixingN andL and obtaining estimates forbc(L,N), a1(L,N) anda2(L,N). We then
take the limit asN → ∞ and we check thatbc(L), a1(L) anda2(L) have proper continuum limits as
L → ∞. The extrapolation to the continuum limit are shown in Fig. 1, Fig. 2 and Fig. 3.
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Figure 2: Extrapolation to the continuum limit of the parameter matching to the scaled variable,α.
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Figure 3: Extrapolation to the continuum limit of the parameter matching to the scaled variable,ξ .
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