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1. Two dimensional SU(N) X SU(N) principal chiral model

The two dimensional SU(N) X SU(N) principal chiral model is similar to four dimensional
SU(N) gauge theory in many respects[1]. The continuum action is given by

S=
N
T

∫

d2xTr∂µ g(x)∂µ g†(x) (1.1)

whereg(x) ∈ SU(N). The global symmetry group SU(N)L× SU(N)R reduces down to a single
SU(N) “diagonal subgroup” if we make a translation breaking“gauge choice”,g(0) = 1. This
model is asymptotically free and there areN−1 particle states with masses

MR = M
sin(Rπ

N )

sin( π
N)

, 1≤ R≤ N−1. (1.2)

The states corresponding to theR-th mass are a multiplet transforming as anRcomponent antisym-
metric tensor of the diagonal symmetry group.

The two point functionW = g(0)g†(x) plays the role of Wilson loop with the separationx
playing the role of area. We expect the behavior to be perturbative for smallx. On the other hand,
non-perturbative effects become important for largex.

One expects

GR(x) = 〈χR(g(0)g†(x))〉 ∼CR

(

N
R

)

e−MR|x| (1.3)

where χR is the trace in theR-antisymmetric representation. Comparison with the heat-kernel
representation of the characteristic polynomial associated with the Wilson loop operator in two
dimensional largeN QCD [2] suggests the following connections:

• The two point correlator,W(d) = g(0)g†(d), is analogous to the Wilson loop operator.

• M|x| is analogous to the dimensionless area,t.

Based on this analogy, we hypothesize [3] that the characteristic polynomial, det
(

z−g(0)g†(d)
)

,
will undergo a transition at some valuedc. The universal behavior at this transition will be in the
same universality class as two dimensional largeN QCD.

2. Setting the scale

Numerical measurement of the correlation length using the lattice action

SL = −2Nb∑
x,µ

ℜTr[g(x)g†(x+ µ)] (2.1)

and

ξ 2
G =

1
4

∑xx2G1(x)

∑xG1(x)
(2.2)

yields the following continuum result [4]:

MξG = 0.991(1) (2.3)
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We useξG to set the scale and it is well described by

ξG = 0.991

[

e
2−π

4

16π

]

√
E exp

(π
E

)

(2.4)

in the range 11≤ ξG ≤ 20 with

E = 1− 1
N

ℜ〈Tr[g(0)g†(1̂)]〉 =
1
8b

+
1

256b2 +
0.000545

b3 − 0.00095
b4 +

0.00043
b5 (2.5)

The above equations will be used to find ab for a givenξ .

3. Smeared SU(N) matrices

Well defined operators are obtained using smeared matrices.We start withg(x) ≡ g0(x) and
one smearing step takes us fromgt(x) to gt+1(x) using the following procedure. DefineZt+1(x) by:

Zt+1(x) = ∑
±µ

[g†
t (x)gt(x+ µ)−1]. (3.1)

Construct anti-hermitian tracelessSU(N) matricesAt+1(x)

At+1(x) = Zt+1(x)−Z†
t+1(x)−

1
N

Tr(Zt+1(x)−Z†
t+1(x)) ≡−A†

t+1(x). (3.2)

Set

Lt+1(x) = exp[ f At+1(x)]. (3.3)

gt+1(x) is defined in terms ofLt+1(x) by:

gt+1(x) = gt(x)Lt+1(x). (3.4)

This procedure is iterated till we reachgn(x) and the smearing parameter is defined byτ = n f .
For a fixedξG, the parameterτ is fixed such thatτ/ξ 2

G remains unchanged. We setn = 30 in our
numerical simulations and this was found sufficiently largeto eliminate a dependence on the two
factors, f andn, individually.

4. Numerical details

We needL/ξG > 7 to minimize finite volume effects. We worked in the range 11≤ ξG ≤ 20
and therefore we choseL = 150. We used a combination of Metropolis and over-relaxation at each
site x for our updates. The full SU(N) group was explored. 200-250 passes of the whole lattices
were sufficient to thermalize starting fromg(x) ≡ 1. 50 passes per step were enough to equilibrate
if ξG was increased in steps of 1.

The test of the universality hypothesis proceeds in the samemanner as for the three dimen-
sional largeN gauge theory. We defined the characteristic polynomial,F(y,d), as

F(y,d) = 〈det(ey/2 +e−y/2W(d))〉 (4.1)
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Figure 1: Behavior ofΩ as a function ofα in the scaling region.

We perform a Taylor expansion,

F(y,d,N) = C0(d,N)+C2(d,N)y2 +C4(d,N)y4 + . . . (4.2)

sinceF(y,d) is an even function ofy. It is useful to define

Ω(d,N) =
C0(d,N)C4(d,N)

C2
2(d,N)

(4.3)

which resembles a Binder cumulant.
As N → ∞, Ω(d,∞) is a step function withΩ = 1

6 for short distancesd < dc andΩ = 1
2 for

long distances,d > dc. Zooming in on the step function asN → ∞ in the vicinity of d = dc using
the scaling variableα ∝

√
N(d−dc), we obtain Fig. 1.

We useΩ(α = 0) = 0.364739936 to obtain the critical sizedc in the following manner. Given
an N and aξ , we find thedc that makes the Binder cumulantΩ(dc,N) = 0.364739936 as shown
in Fig. 2. We look atdc as a function ofξ for a givenN. This gives us the continuum value of
dc/ξ for thatN. This extrapolation is shown in Fig. 3 forN = 30. We then take the largeN limit
as shown in Fig. 4 and it gives us

dc

ξG
|N=∞ = 0.885(3) (4.4)

Further substantiation of the universal behavior can be given by comparing the eigenvalues
distribution in the model to the Durhuus-Olesen eigenvaluedistributions in two dimensional QCD.
This is shown for one example each on either side of the critical point in Fig. 5 and very close to
the critical point in Fig. 6. We use 2k = t to match with the notation in [5].
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Figure 2: Plot of Ω(d) after the subtraction ofΩ(α = 0) = 0.364739936 as a function ofd/ξG.
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Figure 3: Extrapolation to continuum ofdc/ξ for N = 30.
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Figure 4: Extrapolation of the continuumdc/ξ to infiniteN.

0 0.2 0.4 0.6 0.8 1
θ/π

0

0.2

0.4

0.6

0.8

p(
θ/

π)

k=2.28
d/ξ

G
=21/20

k=1.38
d/ξ

G
=10/20

N=40, ξ
G
=20

Figure 5: Examples of eigenvalue distribution for one small and one large distance.
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Figure 6: An example of an almost critical eigenvalue distribution.
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