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Spectra of space reduced gauge theories are studied using Fock space methods. After short review

of the SU(2) model we discuss in detail the non-abelian supersymmetric system with one fermion

and one boson in the large N limit. The system turns out to be very rich exhibiting a phase

transition and a strong-weak duality. Moreover it is equivalent, at strong ’t Hooft coupling, to the

XXZ chain of Heisenberg spins and, independently, to a lattice gas of q-bosons.
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Solving some gauge systems ...

Dimensional reduction of field theories is a useful trick which substantially simplifies the
system, but nevertheless resulting models often inherit many nontrivial properties of their ancestors.
In Dublin we have reported [1] on the numerical study of the spectrum of the supersymmetric Yang-
Mills quantum mechanics with the SU(2) gauge group with the hamiltoniani = 1, ..,D−1, a =

1, ...,N2−1 [2]
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The spectrum of this system is very rich, c.f. Fig.1, and indeed exhibits many features of the
parent theory [3]. Its salient characteristics include: 1)unbroken supersymmetry (the tails, or
wings, on the plot denote dynamically formed supermultiplets), 2) coexistence of the discrete (red)
and continuous (yellow) spectra. The discrete spectrum (blue and red) is a consequence of a,
characteristic to the gauge theory, potentials with flat noncompact directions. On the other hand,
the continuous spectrum (which fills the central, denoted bythe yellow colour, channels on the plot)
results from the supersymmetry driven cancelations of the transverse fluctuations which render the
quantum induced barrier inactive. Finally 3) the fractional bulk value (1/4) of the Witten index was
confirmed[4] and is the consequence of the continuous spectrum extending all the way to E=0. In
particular the (two) SUSY ground states belong to this continuum and are non-normalizable.

All these results were obtained using the straightforward Fock space methods [5]. Namely,
the gauge invariant basis of the finite number of bosonic and fermionic (here 9+6) oscillators was
constructed. Then the space was cut by limiting the total number of bosonic quanta, and the cutoff
was subsequently removed. The discrete energies shown in Fig.1 correspond tonmax∼ 20 and have
already converged to more than three significant digits.
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Figure 1: The discrete spectrum of theD = 4 SU(2) supersymmetric Yang-Mills quantum mechanics. States
are grouped in supermultiplets, colored in red if the continuum spectrum is present in the channel, in blue
otherwise.

At the same time there is much interest in studying the large Nlimit of gauge theories and their
reduced counterparts. At large N mathematical structures of four dimensional models simplify, but
also new analogies have been found in higher dimension. For example, while forN = 2,3 andD = 4
the non-SUSY part of (1) is the small volume limit of the Lattice YM theories, the infinite N limit
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Solving some gauge systems ...

is not only relevant to QCD, but for D=10, it becomes a celebrated matrix model for the M-theory
[6]. The Fock space calculations, discussed above, become more tedious and CPU consuming
with increasing N. Fortunately however, one can often calculate a hamiltonian matrix analytically
strictly at infinite N. In this talk I would like to report results of such astudy [7].

Consider the following supersymmetric hamiltonian of one boson and one fermion repre-
sented by the matrix valued creation and annihilation operatorsa,a† and f , f †. H = {Q,Q†},Q =√

2Tr[ f a†(1+ga†)],Q† =
√

2Tr[ f †(1+ga)a], or explicitlyH = Tr[a†a+g(a†2
a+a†a2)+g2a†2

a2]+

Tr[ f † f +g( f † f (a†+a)+ f †(a†+a) f )+g2( f †a f a†+ f †aa† f + f † f a†a+ f †a† f a)] . It is a slightly
more complicated version of the space reduced 1+1 dimensional supersymmetric Yang-Mills the-
ory SYM2. While the eigenstates of the latter are the gauge invariantplane waves [2], our model
has more structure, as will be evident shortly.

Above hamiltonian conserves the fermion numberF = Tr[ f † f ]. In the planar limit the Fock
space is spanned by the single trace states and theH matrix can be easily calculated in the lowest
fermionic sectors [7, 9]

F = 0, |0,n〉 = Tr[a†n
]|0〉/

√
Nn, < 0,n|H|0,n > = (1+ λ (1−δn1))n,

< 0,n+1|H|0,n >=< 0,n|H|0,n+1 > =
√

λ
√

n(n+1). (2)

F = 1, |1,n〉 = Tr[a†n
f †]|0〉/

√
Nn, < 1,n|H|1,n > = (1+ λ )(n+1)+ λ ,

< 1,n+1|H|1,n >=< 1,n|H2|1,n+1 > =
√

λ (2+n).

As in the previous case, we restrict the gauge invariant number of bosonic quantan < B and ex-
amine convergence of the spectrum with that cutoff (cf. first two columns of Figure 2). Indeed
for λ 6= 1 the eigenvalues converge revealing a discrete, manifestly supersymmetric spectrum (see
Fig.3, left). However in the vicinity ofλ = 1 the convergence is slower and is replaced by the uni-
form fall off of all eigenvalues to zero atλ = 1. Such a behaviour is typical for a phase transition at
λc = 1 which separates strong and weak coupling phases. In both regimes the spectrum is discrete
while at the transition point the system looses it mass gap and the spectrum becomes continuous1.

Moreover, we have found that exactly at the transition pointanother interesting phenomenon
occurs[7]. Namely the supermultiplets rearrange while passing acrossλc anda newsupersymmet-
ric vacuum appears in the strong coupling phase, in theF = 0 sector. This is seen in the third
column of Fig.1 where the first few levels from both (F=0 and F=1) sector are shown. For low
cutoff, B,
the supersymmetry is broken (most noticeably in the vicinity of λ = 1), the levels forming su-
permultiplets in the weak coupling phase split, rearrange and rejoin at strong coupling. In that
process one more level fromλ < 1 becomes massless (and unpaired) in theλ > 1 region. All this
is happening in the smaller and smaller neighbourhood of thecritical point while we increaseB,
the whole structure collapsing to one point at infinite cutoff. The new vacuum can be explicitly
constructed

|0〉2 =
∞

∑
n=1

(−1
b

)n 1√
n
|0,n〉, b≡ 1√

λ
. (3)

1This can be judged on the basis of the cutoff dependence, similarly as in SYMQM considered in Sect.1,see
also[10].
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Figure 2: The cutoff dependence of the spectra ofH, in the F=0 sectorfor a range ofλ ’s

Indeed this state exists only forλ > 1 and supplements the the perturbative vacuum|0〉1 = |0〉,
which is there in both phases. Interestingly, the lowest twofermionic sectors reveal an exact duality
between weak and strong coupling phases

F = 0 b

(

E(F=0)
n (1/b)− 1

b2

)

=
1
b

(

E(F=0)
n+1 (b)−b2

)

. (4)

F = 1 b

(

E(F=1)
n (1/b)− 1

b2

)

=
1
b

(

E(F=1)
n (b)−b2

)

Notice that the above mapping of energies takes into accountadditional vacuum state appearing at
strong coupling.

Usually, dualities hint at a solubility of a system and indeed this is also the case with our
Hamiltonian in the two lowest sectors. To show this we introduce a non-orthogonal basis [7]|Bn〉=√

n|0,n〉+ b
√

n+1|0,n+ 1〉, and a generating functionf (x) for the expansion of the eigenstates
|ψ > into the|Bn〉 basis: f (x) = ∑∞

n=0cnxn ↔ |ψ〉 = ∑∞
n=0cn|Bn〉. Action of H on |Bn〉 is

so simple that the eigenequationHψ = Eψ is equivalent to the first order differential equation for
f (x)

w(x) f ′(x)+x f(x)− ε f (x) = b f(0)+ f ′(0),

w(x) = (x+b)(x+1/b), E = b(ε +b)

which can be readily solved in terms of the hypergeometric functions,E = α(b2−1),

f (x) =
1
α

1
x+1/b

F(1,α ;1+ α ;
x+b

x+1/b
), b < 1,
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Solving some gauge systems ...

f (x) =
1

1−α
1

x+b
F(1,1−α ;2−α ;

x+1/b
x+b

), b > 1,

with the boundary conditionf (0) = 0 determining the eigenenergiesEn [7] ( see also [8]).
As the additional check one can confirm construction (3) by setting α = 0 in theb> 1 solution.

and expandingf0(x) = log[(b+ x)/(b−1/b)]/(1+ bx), b > 1, into powers of 1/b. Notice that
this cannotbe done forb < 1 solution – there is no such state at weak coupling!
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Figure 3: Low lying bosonic and fermionic levels in the first four fermionic sectors.

With more fermions the system becomes even richer, and new phenomena occur. In particular
the supersymmetry results in a more involved pattern of energy levels (cf. Fig.3). While the SUSY
pairing was complete among theF = 0 and 1 states (Fig.3, left), it is no longer so with more
fermions (Fig.3, right). For example, every state with two fermions has its (degenerate in energy)
supersymmetric partner with three fermions. However thereare states in theF = 3 sector which
do not have counterparts withF = 2. Is SUSY broken? No, missing partners are in the four-
fermions sector etc.,ad infinitum. The lowest two sectors are special in a sense that there, and
only there, complete representations of SUSY are accommodated. It is also evident from Fig.3
that theF = 0,1 spectra are much more regular (almost, but not exactly, harmonic). Irregularities
seen in the higher sectors are somewhat reminiscent of the many-body spectra with momentum
modes taken into account. It seems that only because of the simplicity of the lowest two sectors
the analytic approach was so successful there. Neither duality, nor the full analytic solution seems
to exist in higher sectors2.

On the other hand the phase transition occurs at the same value of ’t Hooft coupling also with
more fermions. Moreover, similarly to theF = 0,1 cases, the supermultiplets rearrange and the
two new non-trivial vacuum states appear as we move from weak to strong coupling phases [7].

Even though there are few analytic results for arbitrary value of ’t Hooft coupling, in the strong
coupling limit

Hstrong≡ lim
λ→∞

1
λ

H = Tr( f † f )+
1
N

[Tr(a†2
a2)+Tr(a† f †a f)+Tr( f †a† f a)], (5)

the system considerably simplifies and additional analytical insight is possible [7]. Namely, the
strong coupling hamiltonian (5) conserves a number ofboth fermionic and bosonic quanta. The
Hilbert space splits now into sectors labeled byF andB= Tr[a†a] with H becoming a finite matrix

2Some analytic results with two fermions are available tough[7].
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Solving some gauge systems ...

in each(F,B) sector,cf. Table 1. Many properties of these splitting can be studied exploiting
a fascinating interplay between supersymmetry and combinatorics leading to a number of exact
results [11]. In particular we have found that there exists an infinite set ofmagicsectors with a
single supersymmetric vacuum existing in (and only in) eachof them. The magic sectors occur
only at evenF andB = F ±1, forming a magic staircase on the map (Table 1) of the whole Hilbert
space. This generalizes results discussed above3, for example the first row of Table 1 represents the
F = 0 sector for anyλ , i.e. without splitting into variousB’s, and indeed there is only one magic
(F,B) sector corresponding to one new vacuum found in the strong coupling phase. Similarly, there
are two magic sectors in theF = 2 column, confirming what was said above.

This intriguing result is explained by even more interesting equivalence to be discussed now.
Consider a Heisenberg chain of spins located on a finite, one dimensional lattice

H(∆)
XXZ = −1

2

L

∑
i=1

(

σ x
i σ x

i+1 + σ y
i σ y

i+1 + ∆ σ z
i σ z

i+1

)

11 1 1 6 26 91 ... ... ... ... ... 16796
10 1 1 5 22 73 201 497 1144 ... ... ...
9 1 1 5 19 55 143 335 715 1430 ... 4862
8 1 1 4 15 42 99 212 429 809 1430 2424
7 1 1 4 12 30 66 132 247 429 715 1144
6 1 1 3 10 22 42 76 132 217 335 497
5 1 1 3 7 14 26 42 66 99 143 201
4 1 1 2 5 9 14 20 30 43 55 70
3 1 1 2 4 5 7 10 12 15 19 22
2 1 1 1 2 3 3 3 4 5 5 5
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 0 1 0 1 0 1 0

B
F 0 1 2 3 4 5 6 7 8 9 10

Table 1: Sizes of gauge invariant bases in the (F,B) sectors.

with the anisotropy parameter∆. It turns out that our planar system at strong coupling (5) is
equivalent to the above XXZ chain with (for details see[7])

L = F +B, Sz =
L

∑
i=1

sz
i = F −B, and ∆ = ±1

2

There are many consequences of this result, one of them beingthat there must exist a hidden
supersymmetry of the above Heisenberg spin chain. In particular, since our SUSY generators
changeF +B by one unit at strong coupling, the supersymmetry in question connects lattices with
different sizes!

There exists a vast literature on lattice spin models. More than thirty years ago Baxter has
found that, for∆ = −1/2, the ground states withSz = ±1/2 have particularly simple eigenenergy
E0 =−3

4L for infinite L [12]. Recently his findings have been extended by Riazumov and Stroganov
to any finite, odd L [13]. Our magic staircase appears at evenF andB = F ±1 which suggests that

3Assuming there are no more phase transitions betweenλ = 1 and infinity.
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Solving some gauge systems ...

the Riazumov-Stroganov states are nothing but our strong coupling vacua. Detailed inspection of
the relations betweenHstrong andHXXZ shows that indeed this is the case!

Amusingly, our system is also equivalent to another statistical model, namely that of the lattice
gas of q-deformed bosons with the hamiltonian

H = B+
F

∑
i=1

δNi ,0 +
F

∑
i=1

bib
†
i+1 +bib

†
i−1. (6)

Skipping all the details (see again [7, 9]) we only mention that in view of this result the latter model,
considered to be non-soluble until now [14], is in fact soluble as it becomes equivalent to the XXZ
chain which is solubleeg. by the Bethe Ansatz. In fact a remarkable simplification occurs in the
Bethe Ansatz when applied toHstrong. In particular, it can be used to construct analytically thefirst
six SUSY vacua along our magic staircase [9].

Summarizing, we have shown that the Fock space methods successfully eliminate fermionic
sign problem and can provide complete numerical solution (spectra and wave functions) for gauge
systems with large (15 - 50) number of degrees of freedom (DOF). Applied in the planar limit they
allow to diagonalize hamiltonians with an infinite number ofcolour DOF. Planar spectra of the
space extended field theoretical systems can also be studiedwithin this approach (see [15] for more
references).
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