
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
4
3

A study of ghost–gluon vertices in MAG: Feynman
rules

A. Mihara
Instituto de Ciências Exatas e Tecnologia – Itacoatiara
Universidade Federal do Amazonas – Brazil
E-mail: mihara@ufam.edu.br

A. Cucchieri
Instituto de Física de S. Carlos
Universidade de S. Paulo – Brazil
E-mail: attilio@ifsc.usp.br

T. Mendes ∗

DESY–Zeuthen – Germany
E-mail: mendes@ifsc.usp.br

In the continuum regime the running coupling constant of QCD, obtained through the ghost-gluon

vertex in maximally Abelian gauge (MAG), depends only on therenormalization factor of the di-

agonal gluon propagator, due to cancellation of the other renormalization factors. This fact is a
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1. Introduction

In the low-energy regime the maximally Abelian gauge (MAG) is suitable for the study of
the dual-superconductivity mechanism for color confinement. Accordingto this mechanism, QCD
could be described by an effective Abelian theory with monopoles. The condensation of the mag-
netic charges might give rise to quark confinement (see for instance [1,2] and references therein).
Other important features of MAG are that, in the continuum, it is a renormalizablegauge (see for
example [3, 4] and references therein) and that it has a simple formulation on the lattice (see for
example [5, 6]). These features allow one to compare results obtained in thecontinuum to results
from lattice calculations.

The infrared behavior of the running coupling constant in MAG can be studied through the
vertex with two off–diagonal ghosts and one diagonal gluon. Then, the running coupling is related
to the renormalization constants by the following expression

α(p) = α0 ZD(p)

[

ZG(p)

ZV(p)

]2

, (1.1)

whereZD is the renormalization factor of the diagonal gluon propagator,ZG is the renormalization
factor of the off–diagonal ghost propagator andZV is the renormalization factor of the vertex [7].
On the other hand, from perturbative studies in the continuum [7] one knows thatZG = ZV and
therefore the running coupling depends only on the renormalization factorof the diagonal gluon
propagator

α(p) = α0 ZD(p) . (1.2)

This fact can be seen as a clear manifestation of Abelian dominance.
In this paper we present a tree–level calculation of the ghost–gluon vertices on the lattice in

MAG with the determination of the Feynman rules for these vertices. In Section 2we present a
brief review of the Yang–Mills theory in MAG, both in the continuum and in the lattice case. In
Section 3 we expand the ghost action on the lattice, obtaining the Feynman rulesfor the ghost–
gluon vertices in MAG. In the same section, we conclude the paper with some remarks.

2. Yang–Mills theory in MAG

In this section we set our notation and definitions for theSU(2) case.

2.1 Continuum case

The Abelian configurations of the gauge field are identified with the diagonalcomponentsA 3
µ

corresponding to theU(1) subgroup of theSU(2) group, i.e.

Aµ = A
a

µ Ta +A
3

µ T3 , a = 1,2 . (2.1)

The MAG gauge-fixing condition is given by

D
ab
µ A

b
µ = 0 (2.2)

with
D

ab
µ = δ ab∂µ −gεab3

A
3

µ . (2.3)
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This can be obtained by minimizing the norm of the off–diagonal components with respect to gauge
transformations. Indeed the stationarity condition

δ
∫

d4x A
a

µ A
a

µ = 0 (2.4)

implies
D

ab
µ A

b
µ = 0 , (2.5)

whereδ corresponds to a gauge transformation for the off–diagonal fields, i.e.

δA
a

µ = −D
ab
µ Λb +gε3ab

A
b

µ Λ3 . (2.6)

The remaining localU(1) invariance can be fixed by imposing the additional condition (for the
diagonal component)

∂µA
3

µ = 0 . (2.7)

In MAG the Yang–Mills partition function is written as

Z =
∫

[DA ] det
[

M
ab

]

δ
(

D
ab
µ A

b
µ

)

δ
(

∂µA
3

µ
)

exp[−SYM(A )] , (2.8)

whereM ab is the Faddeev-Popov matrix

M
ab = −D

ad
µ D

db
µ −g2ε3acε3bd

A
c

µ A
d

µ . (2.9)

2.2 Lattice case

On the lattice, the Yang–Mills theory can be defined by the Wilson action [8], which in turn is
written in terms of link variablesUµ(x) ∈ SU(2) group. The gauge fields on the lattice are related
to the link variables through the relation

Aµ(x) =
1
2i

[

Uµ(x)−U†
µ(x)

]

. (2.10)

At the same time, the link variables can be written as

Uµ(x) = U0
µ(x)1I + iAB

µ(x)σB , B = 1,2,3 , (2.11)

where 1I is the 2×2 unit matrix andσB are the Pauli matrices with

[

U0
µ(x)

]2
+ ∑

B

[

AB
µ(x)

]2
= 1. (2.12)

The gauge field in the continuumAµ(x) is related to the link variable by the following expres-
sion

Uµ(x) = exp
[

i ag0Aµ(x)
]

, (2.13)

whereg0 is the bare coupling constant,a is the lattice spacing and

Aµ(x) ≡
σB

2
A

B
µ (x) . (2.14)
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For smalla one finds

AB
µ(x) ≈

ag0

2
A

B
µ (x) + O(a3) . (2.15)

In order to fix the MAG on the lattice one should minimize the functional

E [U ] = −
1

8V ∑
x,µ

Tr
[

σ3Uµ(x)σ3U†
µ(x)

]

. (2.16)

Indeed, using the properties of the Pauli matrices one can verify that minimizingthe functional
above is equivalent to minimize the norm of the off–diagonal gauge fields [as in Eq. (2.4)].

3. Ghost–Gluon Vertices on the Lattice

Using the notation of Ref. [9], finite differences on the lattice are written as

∂̂ L
µ φ(x) = φ(x)−φ(x−aeµ) (3.1)

∂̂ R
µ φ(x) = φ(x+aeµ)−φ(x) . (3.2)

By considering a gauge transformationγ(x) = exp[iωA(x)TA], with A= 1,2,3, an infinitesimal
gauge transformation on the lattice can be written as

δAB
µ = −

[

ΓAB∂̂ R
µ +2εABCAC

µ

]

ωB(x) , (3.3)

whereΓAB is related to the Haar measure and is given by

ΓAB = δ AB+ εABCAC
µ −

1
6
{TC,TD}ABAC

µAD
µ + . . . (3.4)

with TA = σA/2 . One can notice that lattice artifacts are present in (3.3) due to Eq. (2.15).

After using the Faddeev–Popov quantization method, the ghost action can be expanded in the
series

SFP = ∑
x

c̄a(x)
{

−�δ ab

− g0 εab
[

∂ L
µ A

3
µ

(

1+
a
2

∂ R
µ

)

+

(

1−
a
2

∂ L
µ

)

A
3

µ ∂ R
µ

]

+ g2
0 δ ab

(

1−
a
2

∂ L
µ

)

A
3

µ A
3

µ

(

1+
a
2

∂ R
µ

)

− g2
0 εacεbd

(

1−
a
2

∂ L
µ

)

A
c

µ A
d

µ

(

1+
a
2

∂ R
µ

)

+O(a)+ . . .

}

cb(x) , (3.5)

where∂ L,R = 1
a∂̂ L,R and� = ∑µ ∂ L

µ ∂ R
µ . One should observe that the lattice (discretized) version of

the Faddeev–Popov matrix has an infinite number of vertices. One should also note that, for the
numerical evaluation of the (off-diagonal) ghost propagator [6, 10],one uses the Faddeev–Popov
matrix obtained from the second variation of the functional (2.16).

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
4
3

3.1 Feynman Rules for the Ghost Sector

One can now perform the Fourier decomposition (see for instance Ref. [9]) of Eq. (3.5) in
order to obtain the Feynman rules for the ghost sector in momentum space. The first term on the
rhs of (3.5) is the off–diagonal ghost propagator:

b a

k
=

1
k2 δab . (3.6)

The second term is a vertex involving one diagonal gluon and two off–diagonal ghosts

b a

k

3,µ

p p′
= (2π)4 δ 4(k+ p− p′) ×

ig0 εab.

[

p′µ .cos

(

pµa

2

)

+ pµ .cos

(

p′µa

2

)]

. (3.7)

The third term is a vertex with 2 diagonal gluons and 2 off–diagonal ghosts

b a

p p′

k′ k

3,µ 3,ν

= (2π)4 δ 4(k′ +k+ p− p′) ×

(−2g2
0)δ abδ µν . cos

(

pµa

2

)

.cos

(

p′µa

2

)

. (3.8)

The forth term is a vertex with 2 off–diagonal gluons and 2 off–diagonalghosts

b a

p p′

k′ k

c,µ d,ν

= (2π)4 δ 4(k′ +k+ p− p′)(−g2
0)

(

εacεdb+ εadεcb
)

δ µν . cos

(

pµa

2

)

.cos

(

p′µa

2

)

. (3.9)

The vertices above are the ones that survive in the limita→ 0 and should be compared with
the vertices obtained in the continuum [11]. A preliminary numerical study of the vertex with one
diagonal gluon and two off-diagonal ghosts has been presented in [12].

The study presented here is preliminary, since a more careful analysis should be performed in
order to check the renormalizability of the theory in this context. In particular,one would expect
the inclusion of a quartic ghost term in the action, as occurs in the continuum [3].
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