
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
4
6

Three Fermions in a Box

Thomas Luu∗†

P.O. Box 808, L-059
Lawrence Livermore National Laboratory
Livermore, CA 94551 USA
E-mail: tluu@llnl.gov

I calculate finite-volume effects for three identical spin-1/2 fermions in a box assuming short-

ranged repulsive interactions of ‘natural size’. This analysis employs standard perturbation theory

in powers of 1/L, where L3 is the volume of the box. I give results for the ground states in theA1,

T1, andE cubic representations.

The XXVI International Symposium on Lattice Field Theory
July 14-19 2008
Williamsburg, Virginia, USA

∗Speaker.
†In collaboration with W. Detmold and A. Walker-Loud. LLNL-PROC-407504

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
4
6

Three Fermions in a Box Thomas Luu

1. Introduction

Recently much progress has been made in calculating two-body low-energy constants (LECs)
directly from QCD in the mesonic sector (see [1] for a recent review). Lattice QCD (LQCD)
calculations of two-meson interacting energies are performed and, using L̈uscher’s formalism[2],
the scattering lengths are extracted. The exceptionally clean signals obtained in the mesonic sector
have allowed for the extraction of pure three-body LECs [3, 4] using the multi-boson finite volume
effects derived in [5, 6]. In the three-pion sector, the extracted three-body LEC is consistent with a
repulsive three-body interaction[3].

Lüscher’s formalism can be used to extract scattering phase shifts of two interacting baryons
just as in the mesonic sector[7]. However, due to Pauli’s exclusion principle, there is no general
formula for relating LECs to interacting energy shifts for three (and more) fermions. In this pro-
ceeding I present finite volume effects for three identical spin-1/2 particles within a box, thereby
generalizing L̈uscher’s formalism to three fermions. This analysis uses repulsive, short-ranged in-
teractions of ‘natural size’, which is amenable to perturbation theory. Results are given for T1 states
that are accurate to order 1/L5, whereas results for A1 and E states are accurate to order 1/L4. Here
L is the length of a side of the box.

In the next section I give a heuristic explanation of how to construct three-fermion states
of definite cubic symmetry. The anti-symmetry restrictionsmakes this construction non-trivial.
Section 3 then enumerates the perturbative results in powers of 1/L using these basis states. I
conclude in sect. 4.

2. Constructing anti-symmetrised three-fermion states of good cubic symmetry

2.1 Jacobi basis

The three-body single-particle eigenstates of the dimensionless kinetic energy operatorT̂ (in
units ofε0 = 4π2/mL2) in a box of volume L3 are given by|~n1~n2~n3 >, where

T̂ |~n1~n2~n3 >= |~n1~n2 ~n3 >

(

~n2
1

2
+

~n2
2

2
+

~n2
3

2

)

. (2.1)

Here~ni = (nix,niy,niz) represents the wave number vector for theith particle and I have assumed
all particles have equal massm. Other quantum numbers, such as spin (and isospin), have been
suppressed.

For reasons which will become apparent below, the single-particle states are now transformed
to a Jacobi basis using

~R12 = ~r1−~r2

~R3 = ~r3−
1
2

(~r1 +~r2) (2.2)

~Rcm =
1
3

(~r1 +~r2+~r3) .

Here~R12 represents the relative motion between particles 1 and 2,~R3 represents the relative motion
between particle 3 and the center-of-mass (CM) of particles1 and 2, and~Rcm is the total CM
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Figure 1: Depiction of transformation from independent degrees of freedom in the single-particle basis (left)
to the independent degrees of freedom in the Jacobi basis (right).

motion. In momentum space, this corresponds to the following transformations,

~P12 =
1
2

(~p1−~p2)

~P3 =
2
3

(

~p3−
1
2

(~p1 +~p2)

)

(2.3)

~Pcm = ~p1 +~p2+~p3 .

Eigenstates in this Jacobi basis are defined as|~N12 ~N3 ~Ncm >, where now

T̂ |~N12 ~N3 ~Ncm >= |~N12 ~N3 ~Ncm >

(

~N2
12+

3
4
~N2

3 +
1
6
~N2

cm

)

. (2.4)

Figure 1 shows this transformation schematically.
Since interactions occur only between particles (I assume no external potential acting on the

fermions) and typically only the lowest energy eigenstatesare of interest, the utility of switching
to the Jacobi basis is now manifest: one can simply set~Ncm = 0. Thus a three-body problem
effectively becomes a ‘two-body’ problem. All results in the following section use~Ncm = 0, though
it is straightforward (but tedious) to generalize to nonzero CM motion.

A subtle point comes about from the transformation to Jacobibasis since the box boundary
conditions are originally defined in the single-particle basis. In the case when~Ncm = 0, for any com-
ponent of~N3 which is odd, the corresponding component of~N12 must satisfy anti-periodic boundary
conditions. Conversely, any component of~N3 which is even has the corresponding component of
~N12 satisfying periodic boundary conditions. These restrictions can be derived by comparing the
completeness relations within the single-particle basis and the Jacobi basis.

2.2 Three-body antisymmetrised states

The states|~N12 ~N3 > (the index~NCM is dropped since only zero CM motion is considered) are
not anti-symmetric under exchange of any two particles. Anti-symmetric states are constructed by
projecting onto the three-body anti-symmetriser,

P123
A =

1
3

P12
A (1−P13−P23) , (2.5)
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wherePi j is the permutation operator that permutes particlesi and j and

P12
A =

1
2

(1−P12) (2.6)

is the two-body anti-symmetriser of particles 1 and 2. Note that Eq. 2.5 commutes with the parity
operator. Thus the states of interest are ones that satisfy

P123
A |n i π >= |n i π > ,

where|n i π > represents theith state of cubic shelln with definite parityπ. It is made up of linear
combinations of|~N12 ~N3 > such that~N2

12+~N2
3 = n. For each cubic shell there is a finite number of

anti-symmetric statesDn.

2.3 Cubic group symmetry

The states|n i π > are now anti-symmetrised but are not states of good cubic symmetry.
Standard group-theoretical techniques can be used to obtain the appropriate linear combinations of
|n i π > such that the overall anti-symmetric state falls into one ofthe five irreducible representa-
tions (irreps) of the cubic group: A1, A2, E, T1, and T2[8]. A cursory description of this procedure
is only given below.

Given the set of anti-symmetrised states|n i π >, matrix elements of the cubic rotation opera-
torsRα are constructed using this basis,i.e. < n j π|Rα |n i π >, forming a regular representation
of the group. This regular representation consists of 24 matrices, all of dimensionDn ×Dn. Traces
of these matrices give five distinct charactersχR(r), and using the five characters of the irreps of
the cubic group,χIR(r), and the number of rotation elements in each irrep,nIR(r), the multiplicity
of each irrep in this regular representation,

mIR =
1
24

5

∑
r=1

nIR(r)χR(r)χIR(r),

for a given cubic shelln is found. Given the dimension of each irrep,dIR(r), projection operators
for each irrep are then constructed,

PIR =
1
24∑

r
dIR(r)χIR(r) ∑

α∈r
Rα ,

from which the anti-symmetrised states of definite cubic symmetry are constructed. Table 1 enu-
merates the anti-symmetric states for the first three cubic shells. Note that Pauli’s exclusion princi-
ple prevents any three spin-1/2 fermion states residing in then = 0 cubic shell.

3. Perturbative results

At up to order 1/L5, only s-wave and p-wave interactions contribute. I parametrize these
momentum space interactions in the following manner:

V0(~p
′,~p) =

4πa0

m

[

1+
a0r0

2

(

p′2 + p2

2

)

+ . . .

]

(s-wave) (3.1)

V1(~p
′,~p) =

12πa1

m
~p′ ·~p

[

1+
a1r1

2

(

p′2 + p2

2

)

+ . . .

]

(p-wave). (3.2)
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n Spin Parity A1 A2 E T1 T2 Dn

1 1
2 + 1 0 1 0 0 3

1 1
2 - 0 0 0 1 0 3

1 3
2 - 0 0 0 1 0 3

2 1
2 + 2 1 3 1 2 18

2 1
2 - 0 0 0 3 3 18

2 3
2 + 0 1 1 1 0 6

2 3
2 - 0 0 0 2 2 12

3 1
2 + 4 0 4 3 6 39

3 1
2 - 0 3 3 7 3 39

3 3
2 + 1 1 1 2 2 16

3 3
2 - 0 3 1 4 1 20

Table 1: Dimension and multiplicity of anti-symmetric states of various cubic irreps for zero CM motion.n
refers to value of cubic shell. The cubic irreps are A1, A2, E, T1, and T2 and refer to the spatial part of the
wavefunctions. Numbers below these irreps correspond to the mulitplicity of the irrep within cubic shelln.
Last column gives the total dimension of anti-symmetric statesDn in cubic shelln.

The parametersa0 and r0 are the scattering length and effective range, respectively. They both
have units of length. The parametersa1 andr1 are the scattering volume and effective momentum,
having units of length3 and length−1, respectively. The perturbative analysis assumes thata0/L � 1
andr0/L � 1, as well asa1/L3 � 1 andr1L � 1.

The results, when expressed with dimensional units, are accurate to order 1/L5 for the T1 states.
For E and A1 states, the results are accurate to order 1/L4. However, since results are presented in
units ofε0 = 4π2

mL2 (i.e. results are dimensionless), at most terms of order 1/L3 are shown explicitly.
Only states perturbatively connected to the first cubic shell n = 1 are shown. To facilitate the
presentation, a list of the various lattice sums and their numerical values that are inherent to these
calculations is given in tab. 2.

3.1 T−
1 Spin=3

2

This channel is only sensitive to the effective range,

ε
ε0

= 1+36π
a1

L3 +O(L−5) . (3.3)

Furthermore, there are no terms that come in at 1/L4 on the right-hand side of eq. 3.3.

3.2 T−
1 Spin=1

2

ε
ε0

= 1+3
a0

πL
+

(

3
2
−3L2

)

a2
0

π2L2 +27π
a1

L3 +
3
2

π
a2

0r0

L3

+

(

9
4
−3L2 +3L

2
2 −6M2

)

a3
0

π3L3 +O(L−4) . (3.4)
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Label Expression Numerical value

L1 ∑|~n|≤Λ 1
~n2−1 −4πΛ -1.21134

L2 ∑|~n|≤Λ 1
n2

x+n2
y+nz(nz+1)

−4πΛ -6.37481

M1 ∑ 1
(~n2−1)2 23.24322

M2 ∑ 1
(n2

x+n2
y+nz(nz+1))2 18.3

Table 2: Lattice sums and their numerical values. Sums are over all triplet of integers~n = (nx,ny,nz) such
that the denominator does not vanish. The limitΛ → ∞ is implicit.

3.3 E+ Spin=1
2

ε
ε0

= 1+
a0

πL
−

(

3
2

+L2

)

a2
0

π2L2 +O(L−3) .

(3.5)

3.4 A+
1 Spin=1

2

ε
ε0

= 1+7
a0

πL
−

(

3
2

+L2 +6L1

)

a2
0

π2L2 +O(L−3) .

(3.6)

4. Conclusion

I have presented finite volume effects for three identical spin-1/2 fermions in a box interacting
via short-ranged, repulsive interactions of ‘natural’ size. Results are given for states in the first
cubic shelln = 1 and are valid up to order 1/L5 for the T1 states and 1/L4 for the A1 and E states.
These results generalize Lüscher’s formalism to three spin-1/2 fermions in a box.

A similar analysis can be performed on nucleons by the introduction of isospin degrees of
freedom[9]. Here the spectra of states is extremely rich andthe structure of the interactions is
complex due to the presence of tensor forces and pure s-wave three-body interactions. Further-
more, at the physical pion mass the interactions are no longer of ‘natural’ size and non-perturbative
formalisms must be employed[9].

Ultimately, LQCD will answer current outstanding nuclear physics questions, such as the na-
ture and origin of the tensor force and three-nucleon interaction. This work represents a necessary
step towards obtaining these answers.
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