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1. Introduction

Understanding the large distance behavior of asymptotically free gauge theories in terms of
the weakly coupled short distance degrees of freedom is a major challenge for theoretical physics.
In pure gauge theory with the standard Wilson’s action, the available numerical data onL4 lattices
indicates that there is no phase transition forSU(2) or SU(3) and the theory should be in the
confining phase for all values of the coupling. Convincing arguments have been given [1, 2] in favor
of the smoothness of the renormalization group flows betweenthe two fixed points corresponding
to the two limits. This suggests that it is possible to match the weak coupling and the strong
coupling expansions of the lattice formulation. However, if we consider the two expansions, for
instance for the averageSU(2) plaquette as a function ofβ = 4/g2, there is a crossover region
(approximately 1.5 < β < 2.5) where none of the two expansions seem to work. This situation
can probably be explained in terms of singularities in the complexβ plane [3, 4] that at this point
are not completely understood. In these proceedings, we discuss the weak and strong coupling
expansions of the density of states forSU(2) and compare them to Monte Carlo calculations. The
density of states is the inverse Laplace (or Borel) transform of the partition function. Its logarithm
can be interpreted as a "color entropy". This is discussed insection 2 where the basic concepts are
defined.

For the one plaquette model, the density of states is a function that has better convergence
properties than the partition function [5]. This is explained in section 3. We would like to know
if this property persists onL4 lattices. The comparison between weak and strong expansions and
numerical calculations of the density of states for a 64 lattice are summarized in section 4. More
details can be found in [6].

Knowing the density of states, we can calculate the partition function and its derivatives for
any real or complex value ofβ . In particular, it can be used to determine the Fisher’s zeros of the
partition function [7, 8]. Locating these zeros in the complexβ plane and their volume dependence
is important to understand the large order behavior of the weak coupling expansion [4, 9, 10, 11]
at zero temperature and the nature of the finite temperature transition [12]. Related questions have
also been discussed in a poster presented at the same conference [13].

2. The density of states

In the following, we focus on aSU(2) gauge theory with Wilson’s action on aL4 lattice and
periodic boundary conditions. We denote the number of plaquettesNp = 6× L4. The partition
functionZ(β ) is the Laplace transform ofn(S), the density of states:

Z(β ) =

∫ 2Np

0
dS n(S) e−βS , (2.1)

with

n(S) = ∏
l

∫

dUlδ (S−∑
p

(1− (1/N)ReTr(Up))) (2.2)

We can interpret ln(n(S)) as a "color entropy" (extensive). For cubic lattices with an even number
of sites in each direction and a gauge group that contains−1, it is possible to changeβReTrUp into
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−βReTrUp by a change of variablesUl →−Ul on a set of links such that for any plaquette, exactly
one link of the set belongs to that plaquette [14]. This implies

Z(−β ) = e2βNp Z(β ) (2.3)

and consequently

n(2Np −S) = n(S) (2.4)

Thanks to this symmetry, we only need to known(S) for 0 ≤ S ≤ Np . Note that< S >= Np

means< TrUp >=0.

We define

f (x,Np) ≡ ln(n(xNp,Np))/Np . (2.5)

The symmetry (2.4) implies that

f (x,Np) = f (2− x,Np) (2.6)

The existence of the infinite volume limit requires that

limNp→∞ f (x,Np) = f (x) , (2.7)

with f (x) volume independent. In the same limit, the integral ( 2.1) can be evaluated by the saddle
point method. The maximization of the integrand requires

f ′(x) = β . (2.8)

3. The one plaquette case

In the case of the one plaquette model, the density of state simply follows from the explicit
form of the Haar measure:

n1pl.(S) =
2
π

√

S(2−S) (3.1)

At leading order, the largeβ behavior of the partition function is determined by the behavior of
n(S) nearS = 0. The fact thatn(S) ∝

√
S for small S implies Z ∝ β−3/2 for large β . The 1/β

corrections can be calculated by expanding the remaining factor
√

2−S in powers ofS. One then
sees that a series with finite radius of convergence becomes an asymptotic series if we integrate
overS from 0 to∞ (instead of 0 to 2). In addition, the large order behavior of the asymptotic series
is determined by the non-analyticity ofn1pl.(S) at the maximal value ofS (2 in this case).

These properties are in agreement with the general idea thatthe large order behavior of the
weak coupling expansion is determined by the behavior at small negative coupling [15, 16]. In the
present case, small negativeg2 means thatβ is very negative. In this limit, the largest possible
values ofS dominate the integral (in agreement with what we explained above). It would be inter-
esting to understand if this property persists onL4 lattices. Unfortunately, numerical values of the
weak coupling expansion of the plaquette are not available for SU(2) and we will have to rely on a
model proposed in [9].
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4. Approximate forms of n(S)

Numerical calculations ofn(S) can be obtained by patching plaquette distributions multiplied
by the inverse Boltzmann weight at various values ofβ . In [6] we presented numerical data for
L4 lattices withL = 4, 6 and 8. For these values ofL, finite volume effects are not too large
and plaquette distributions are broad enough to allow a reasonably smooth patching. The volume
dependence is resolvable only for small values ofS where a behaviorln(S)/V is observed for
ln(n(S)). The coefficient of the singularity was calculated to be(3/4)− (5/12)L−4 in reasonably
good agreement with the numerical data.

The numerical results forf (x) were compared with expansions that can be obtained from the
strong and weak coupling expansions of the average plaquette. Intermediate orders in these ex-
pansions show a good overlap for values ofS that correspond to the crossover (see Fig. 1). The
convergence of the new series can be related empirically to those of the series for the average pla-
quette. The general picture that was obtained by trying withknown series is that the converted
series inherits the asymptotic behavior of the original series. The conversion of the series is per-
formed using the saddle point equation. For the strong coupling, we expand aboutx = 1 (we remind
thatx = S/Np, see section 2). Graphs of the accuracy of the expansion at successive orders, show
a crossing characteristic of a finite radius of convergence nearx = 0.5. This is consistent with a
crossing nearβ ≃ 2 for the plaquette (forβ = 2, the average plaquette is about 0.47). For the weak
coupling, we expand aboutx = 0. Accuracy graphs show consistent improvement as the orderin-
creases (with possible saturation) whenx < 0.4 for f (x) andβ > 3 for the plaquette. However it
should be kept in mind that the large order of the series for the plaquette has been modeled rather
than calculated explictly. For details and graphs see [6].

The weak coupling expansion determines the logarithmic singularities of ln(n(S)) at both
boundaries. When these singularities are subtracted we obtain a bell-shaped function that can
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Figure 1: Weak and strong coupling expansion off at a few intermediate orders.
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be approximated by Legendre or Chebyshev polynomials. Empirically, the determination of the
expansion coefficients based on the discrete orthogonalityof the Chebyshev polynomials (rather
then numerical interpolation followed by numerical integration) seems the most stable.

5. Calculation of Fisher’s zeros

One motivation for this work is to improve our ability to determine the zeros of the partition
function in the complexβ plane. For reference, it is useful to understand the limitation of the
reweighting MC method. In order to estimate the errors in thelocation of the complex zeros, we
considered the changes in the location of the zeros of the real and imaginary part due to statistical
fluctuations. We considered 200 sets of 40,000 values ofS picked at random out of the large sample
of values (bootstraps) generated forβ = 2.225. For each of the 200 sets, we calculated the zeros of
the real part on a small grid with typical distance between neighbooring points of the order of 10−3.
Using this procedure, 383895 zeros of the real part were found. We then studied the distribution of
these zeros using a 200 by 200 grid in theβ complex plane. The results are shown in Fig. 2. In
this contour plot, the outer contours go through the bins that have 20 zeros, the first inner contours
correspond to 60 zeros, the next to 100 zeros etc.. The circleof confidence [8] in the Gaussian
approximation for 40,000 independent configurations as well as another estimate (red boxes in Fig.
2) of the region of confidence discussed in [10] are shown on this graph for reference. It is clear
that as we get closer to the boundary of the region of confidence, the distributions get wider.

It is easier to look at horizontal sections of this distribution. We then have simple histograms
with 200 bins. The results are shown in Fig. 3 forIm β = 0.1, 0.115, 0.13 and 0.145. This allows
us to observe the broadening of the four central peaks asIm β increases. For instance, the two
most central peaks are quite narrow up toIm β = 0.1, but their width becomes comparable to
their separation whenIm β > 0.13. One should bare in mind that such distributions shouldbe
understood together with the interlaced distributions forthe imaginary part which follow similar
patterns. It is clear that complex zeros found in regions where there are broad distributions are
unreliable. The improvement in this situation obtained by using theβ independent density of states
presented above is discussed in a poster [13].

6. Conclusions

We have calculated numerically the density of states forSU(2) lattice gauge theory. The
intermediate orders in weak and strong coupling agree well in an overlapping region of action
values as shown in Fig. 1. However, the large order behaviorsof these expansions appear to
be similar to the corresponding ones for the plaquette. Volume effects can be resolved for small
actions values. Corrections to the saddle point estimate need to be developed more systematically.
Aprroximation of a subtracted quantity by Chebyshev polynomials looks very promising. We also
plan to use this method to study abelian gauge theories and the largeN behavior ofSU(N) gauge
theories where interesting results based on the density of states have already been obtained [17].
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Figure 2: Distribution of zeros of the real part of the partition function in the complexβ plane and regions
of confidence described in the text.

Figure 3: Horizontal sections of the previous graph described in the text.
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