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We report on an attempt to calculate the light-by-light contribution to the muon anomalous mag-

netic moment in QED, using lattice techniques, as a first but significant step toward computing

the analogous hadronic contribution. We use domain wall fermions on quenched non-compact

QED configurations. The method is discussed in detail, and preliminary results are presented. A

signal is not obtained with the limited statistics accumulated so far. We mention possible ways to

improve the statistics to obtain a non-zero result.
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1. Background & Motivation

The magnetic dipole moment of muon is one of the most precisely measured and calculated
quantities in elementary particle physics. It has been measured to a precision of 0.54 parts per
million (ppm) at Brookhaven National Lab (BNL) [1]. The Standard Model prediction has reached
a comparable level to the measured quantity. The differencebetween the theoretical and measured
quantities can be attributed to possible new physics such asSuper-Symmetry (SUSY).

The magnetic dipole moment of muon of massmµ and chargee is given by~µ = g
(

e
2mµ

)

~S,

whereg and~S are the gyromagnetic ratio and muon spin respectively. Quantum Electro-Dynamics
(QED) predictsg = 2 at the tree level for an elementary spin-1

2-particle such as the muon. Quantum
corrections from QED, from strong or weak interactions, or from possible new physics lead to
a contribution ofa = (g − 2)/2 which is called the anomalous magnetic dipole moment. The
theoretical prediction of the one-loop QED contribution toa of a lepton is given by the well-known
Schwinger term,a = α/2π. This dominant contribution is then also further subjectedto higher-
order QED and QCD (Quantum Chromo-Dynamics) corrections. The loop contributions from
heavier particles with massMNewPhys. are suppressed bym2

µ/M2
NewPhys., whereMNewPhys. is SUSY

particle mass. Therefore, the anomalous magnetic dipole moment of muon is(mµ/me)
2 ≈ 40000

times more sensitive to new physics than that of electron.
The anomalous magnetic dipole moment has been measured in theg−2 experiment E821 with

great accuracy at BNL [1]

aµ(EXP) = 11659208(6.3) × 10−10. (1.1)

The Standard Model prediction in [2], based on thee+e− → hadrons cross-section is

aSM
µ = 11659184.1(7.2)Vac.Pol. (3.5)LBL (0.3)QED/Weak ×10−10 (1.2)

where the superscripts correspond to errors due to hadronicvacuum polarization, hadronic light-by-
light scattering, QED and weak interactions repectively. The difference between the SM prediction
and the experimental result is

∆(EXP−SM) = 23.9 (9.9) ×10−10 (1.3)

which suggests the reduction of the uncertainty attributedto the hadronic contributions.

The hadronic light-by-light contribution is very difficultto evaluate. Current estimates vary
between model calculations, 8.6(3.5)×10−10 [3] to 13.6(2.5)×10−10 [4]. Evaluating the light-
by-light contribution with greater accuracy may help reduce the discrepancy and hint to underlying
structures of possible new physics.

2. Proposed method

Our proposal, based on [5] and summarized here, is to evaluate the hadronic light-by-light
scattering amplitude depicted in Fig. 1, which gives rise toan O(α3

em) contribution to the muon
g−2, whereαem≡ e2/(4π).
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µ

elastic scattering amplitude
of two photons by QCD

l1l2

Figure 1: hadronic light-by-light scattering contribution to the muong−2

The diagram can be computed using the following approach; the correlation of four electro-
magnetic currents are calculated repeatedly, using lattice QCD techniques, for two independent mo-
mental1, l2, of two of the three off-shell photons, and are then integrated overl 1, l2 in a perturbative
QED framework. This direct lattice calculation is numerically expensive since it requires space-
time volume-squared independent momentum-source calculations (This approach is discussed in
[6].).

An alternative approach, the one we take in this work, is to use combined (QED+QCD) lattice
simulation to calculate the entire diagram containing the external muon line in the non-perturbative
framework. This approach can be written as

〈 quark 〉

QCD+quenched QED

−

〈

quark

〉

QCD+quenched QED
〈 〉

quenched QED

, (2.1)

where the red, black, and blue lines represent the free photon, full quark, and muon propagators,
respectively, with some proper gauge fixing condition. The average〈, 〉 means the one over the
unquenchedSU(3)C and/or the quenchedU(1)em gauge configurations.

Let us look at the first term of Eq. (2.1)perturbatively with respect to QED in order to explain
the underlying mechanism regarding the proposed method. The Feynmann diagrams contributing
to the anomalous magnetic moment is depicted in Eq. (2.2). The left diagram in the first line
gives theO(α2

em)-contribution. TheO(αem)-corrections to its muon part and to its quark part
induceO(α3

em)-contributions shown in the right diagram on the first line aswell as on the second
line respectively. We recall that the QED gauge configurations in the first term of Eq. (2.1) are
commonly shared by the quark part and the muon part. Hence, the photons can be exchanged
between the two parts. As a consequence, the left diagram in the second line of Eq. (2.2) is induced
at O(α3

em), which takes the form of our target, Fig. 1. On the other hand,in the remaining two
O(α3

em) diagrams the quark and muon parts are connected only by a single photon line. Since
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these diagrams commonly contribute to both the first and second terms in Eq. (2.1), only the light-
by-light diagram remains un-cancelled in the difference ofEq. (2.1). Thus, we may extract the
light-by-light contribution.

O(α2
em)

〈

quark

〉

QCD

O(α3
em)

〈

quark

〉

QCD

O(α3
em)

〈

quark

〉

QCD

O(α3
em)

〈

quark

〉

QCD

. (2.2)

3. Lattice Implementation

In this section, we describe our computational approach, depicted in Fig. (2) for pure QED,
i.e. the hadronic blob is replaced by a lepton loop for now. The reason behind this is to compare the
lattice calculation with the well known QED result. Once thelattice QED calculation is understood
and is in agreement with the perturbative result, we can simply switch back to the quark loop. The
loop is created from a local domain wall fermion (DWF) point source, with conserved currents in
the internal vertices of the lepton loop and line. The use of the conserved currents is crucial to
avoid the appearance of quadratic divergences.

Figure 2: Lattice implementation of the light-by-light diagram.

The definitions of the local and point-split conserved currents are given by

jx,µ = q̄xγµqx (3.1)

Jx,µ =
1
2

Ls−1

∑
s=0

(

Ψ̄x+µ ,s(1+ γµ)U†
x,µ Ψx,s − Ψ̄x,s(1− γµ)Ux,µ Ψx+µ ,s

)

, (3.2)

whereqx andΨx,s correspond to four and five dimensional fermionic fields, respectively, and the
sum is taken over the sites of the fifth dimesion. The amplitude for the loop in configuration space
is given by

Mloop = Πµν(x,y) (3.3)
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wherex andy are the external and internal space-time points. The Fourier transformation at the
internal vertex givesΠµν(x,q) whereq is the four momentum of the photon propagator joining
the loop with the line. Because a point source is used atx, all possible momenta at that point are
allowed.

The muonic line is constructed from momentum source propagators. The incoming propagator
is created at timet1 with ~p = 0, while the outgoing propagator with one unit of momentum is
destroyed at a later timet2. The two are joined at the vertex by the insertion of a conserved current.
The amplitude for the line in configuration space is then given by

Mline = Γρ(t1,~0;z; t2,~p) (3.4)

wherez is the location of the internal vertex. Again, a Fourier transformation at this vertex yields
Γρ(t1,~0;−q; t2,~p). Multiplying the two amplitudes together, and by the photonpropagator, sum-
ming over all momentaq, and averaging over all gauge fields yields

M =

〈

∑
q6=0

Πµν(top,~p,q)
gνρ

q2 Γρ(t1,~0;−q; t2,~p)

〉

. (3.5)

The configuration average ensures spatial momentum conservation, and the external muons are put
on-shell in the usual way by takingt1 ≪ top ≪ t2. The subtraction term is computed by averaging
the loop and line separately, and then multiplying the averages together.

To check the validity of the code using conserved current, wecheck to see that the Ward-
Takahashi Identities (WTI) are satisfied for both the muon loop and line on an arbitrary configura-
tion. The loop must satisfy

qν Πµν(x,q) = 0, (3.6)

whereqν = 2sin(πnν/L) is the lattice momentum. The equation for the line is bit morecomplicated
since the contact terms from the two sources do not cancel.

−ikρ〈q(~p2, t2)Jρ q̄(~p1, t1)〉 = eik4t2〈q(~q + ~p2, t2)q̄(~p1, t1)〉δ (~k + ~p2− ~p1)

−eik4t1〈q(~p2, t2)q̄(~k− ~p1, t1)〉δ (~p2−~k− ~p1). (3.7)

The right hand side is just a linear combination of the incoming and outgoing propagators.
The method just described is slightly different from the original proposal in [5] which required

two independent QED ensembles. We calculate our observables using a single QED ensemble to
make the two terms in Eq. (2.1) as correlated as possible, andthe jack-knife procedure is used to
calculate the error on the difference.

In order to calculate the anomalous magnetic moment from thecorrelation functions described
above, we form linear combinations of the electric and magnetic form factors computed at non-zero
momentum transfer (for example, see [7]). The external legsare amputated using the two-point
functions computed for each source.F 2(q2) needs to be extrapolated toq2 = 0, which has not yet
been done in the following.

Again, it is worth emphasizing that the extension to (QED + QCD) is straightforward once the
pure QED calculation is shown to work. The calculation goes through in an identical fashion, ex-
cept that the quark propagators in the loop are computed on a combined QED+QCD configuration.
Since the QCD part is identical between the two terms in Eq. (2.1), the added fluctuations should
not spoil the delicate cancellation achieved in the pure QEDcase.
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4. Preliminary Results

Our calculations use both Coulomb and Feynman, gauge fixed, non-compactU(1) ensembles
and DWF. We averaged over both positive and negative electric charges on the muon line to cancel
O(e) noise configuration by configuration. Our investigations have mostly been limited to 163×
32×8 lattices, primarily to search for a signal forF 2. Once the statistics are under control, we will
turn our attention to systematic effects like plateaus and finite size effects. Finally, the calculation
was performed for unphysical charge,e = 1, to enhance the signal, and a rather heavy muon mass
of 0.4. The final result can simply be rescaled bye 6.

The lepton loop is constructed by inserting the external electromagnetic current at three differ-
ent time slices, (top = 4,6,8). The incoming muon propagator with zero momentum and outgoing
propagator with one unit of momentum were created at time slicest = 0 and 12, respectively. It
was important to check the WTI’s before proceeding to calculate the anomalous magnetic moment.
They were verified for each on a single non-trivial configuration and in the free case.

3 4 5 6 7 8 9
t_op

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

F
2

Confs = 300 (Coulomb Gauge)
Confs = 500 (Coulomb Gauge)
Confs = 300 (Feynmann Gauge)

F2 vs t_op
Lat 16^3x32x8; Mass = 0.4; Charge = 1; Mom^2 = 1

Figure 3: Anomalous magnetic moment (F2) of muon as a function of time slices of the external vertex (top)

Preliminary results are given in Fig. 3 which shows the anomalous magnetic moment,F 2, as a
function of the time slice of the external vertext op. Red and maroon filled circles are results from
Coulomb gauge fixed lattices, and the blue filled diamonds arethe Feynman gauged-fixed one. We
have done the analysis on 300 and 500 configurations for Coulomb gauge fixed lattices, but only
on 300 lattices for the Feynman gauge1. It is clear from the figure that more statistics are needed to
obtain a signal.

top = 4 top = 6 top = 8

+e 0.0008(9) −0.00007(82) 0.0004(8)
−e 0.0007(9) 0.0007(8) 0.0005(8)
avg 0.0008(6) 0.0003(5) 0.0004(5)

Table 1: Preliminary Results

1In principle, these two theories of QED may differ when computed in finite volume. [8].
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Table 1 shows the results for both positive and negative charges (on the muon line) and the
average. The results are insensitive to the charge, so it appears thatO(e) noise is not significant,
at least after subtraction. Averaging over the three different values oft ops, we find the anomalous
magnetic moment from this QED simulation to beF 2 = 0.00048± 0.00036. F 2 in perturbation
theory has been calculated to be in the order ofα3/π3, which translates into 1.6×10−5 (for e =
1). So, the error is one magnitude greater than the perturbative result.

We note in passing that we are here basically simulating the magnetic dipole moment of the
electron since the masses of the loop and line were the same. In perturbation theory the magnetic
moment only depends on the ratio of masses. Once a robust signal is obtained in this simpler case,
we will give unequal masses to the particles in the loop and line.

5. Conclusion and Acknowledgements

We have developed the machinery necessary to calculate the light-by-light term on the lattice.
Though we did not obtain a signal, we hope to, by increasing our statistics. This can be done in
several ways. The simplest way is to increase the number of measurements. However, to reduce
the error by the required order of magnitude, or more, would probably be too costly (though more
measurements will not hurt). Another approach is to increase the effects of volume averaging by
implementing a momentum source for the external source in the loop instead of the point source
used here. This requires using noisy sources and/or eigen-modes of the Dirac operator. Finally
we can make the volume bigger by moving to larger lattices which will also reduce finite size
systematics. All of these methods are now being investigated.

We thank the US Department of Energy and RIKEN for the supportnecessary to carry out this
research. SC and TB were supported by US DOE grant DE-FG02-92ER40716. Computations were
carried out on the QCDOC supercomputers at the RIKEN BNL Research Center and Columbia
University.
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