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1. Introduction

Given a quantum state|ψ〉 and a corresponding density matrixρ = |ψ〉〈ψ | let us introduce
two observersA andB ≡ Ā, such that observerB sees only degrees of freedom complimentary to
degrees of freedom seen by observerA. Then one can form a reduced density matrix for observer
A: ρA = TrBρ, and define the entanglement entropy as the von Neumann entropy of reduced states

SA = −TrAρA logρA = −∑
i

λi logλi, (1.1)

whereλi are eigenvalues of the reduced density matrix. The entanglement entropySA = 0 for a
product state, and is at maximum for a maximally entangled state: 0≤ SA ≤ 1[ebit].

As a simple example consider a bipartite system|Ψ〉 = cosθ | ↑A〉⊗ | ↓B〉+sinθ | ↓A〉⊗ | ↑B〉.
The reduced density matrix isρA = cos2 θ | ↑〉〈↑ |+sin2 θ | ↓〉〈↓ |, while the entanglement entropy
is

SA = −2cos2 θ logcosθ −2sin2 θ logsinθ , (1.2)

and takes its maximum value of log2 when cos2 θ = 1
2.

B A B

Figure 1: Partitioning by two imag-
inary surfaces into regionsA andB.

One of the more interesting application of the entangle-
ment entropy is its use as a probe of phase, which is espe-
cially important in situations where an order parameter is not
known. It turns out that in confining gauge theories the en-
tanglement entropy may show an interesting non-trivial be-
havior. First it was studied in gravity duals of confining large
N gauge theories [1], where the following geometry was con-
sidered (see Fig. 1)

A = R
d−1× Il,

B = R
d−1× (R− Il), (1.3)

hereIl is a line segment of lengthl. It was observed that
at length separationl = lc the entanglement entropy exhibits a non-analytical change in behavior,
reminiscent of a phase transition.

R

l
1/T

. . .

Figure 2: Zn for 1+1 dimensional
gauge theory.

A natural question to ask if this behavior is relevant for
small N gauge theories. This question was first addressed
in Migdal-Kadanoff formalism [2]. Subsequently other mea-
sures of entanglement (purity) forSU(2) gauge theory were
studied in Monte Carlo simulations [3]. The results of the
Migdal-Kadanoof study are reviewed in this proceedings.

The expression for the von Neumann entanglement en-
tropy is obtained using the replica trick [4, 5]:n replicas of
the system (with regionB integrated out) are glued along the
time boundaries of regionA. We demonstrate the procedure
for a 2d system in Fig. 2. Taking the trace of the combined
system we obtain its normalized partition function

Trρn
A =

Zn(A)

Zn , (1.4)
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whereZ = Z1 is the partition function of the original system. Then after performing analytical
continuation to realn one obtains the entanglement entropy

SA = − lim
n→1

∂
∂n

Trρn
A = − lim

n→1

∂
∂n

Zn(A)

Zn . (1.5)

We apply the described technique toSU(N) gauge theory inD = d +1 dimensions

Z =
∫

∏
l

dUl ∏
p

e−Sp , (1.6)

whereSp ≡ S(Up) = −β/(2N)TrUp + h.c. is a standard Wilson lattice action with the plaquette
variableUp = ∏l∈∂ pUl andβ = 2N/g2 is the inverse lattice coupling. The gauge invariant action
is a class function and therefore allows for character expansion

e−Sp = ∑
r

Frdrχr(Up) ≡ F0

(

1+ ∑
r 6=0

crdrχr(Up)

)

, (1.7)

wherecr = Fr/F0 < 1 andFr =
∫

dUe−S(U) 1
dr

χ∗
r (U).

2. SU(N) gauge theory in 1+1 dimensions: Exact solution

We start with exactly solvable 2-dimensionalSU(N) gauge theory (for an overview and large
N treatment of zero temperatureU(N) gauge theory see Ref. [6]). At finite temperature the gauge
theory leaves on anR×S1 manifold compactified in time direction with period 1/T . The corre-
sponding lattice theory is formulated on anNr ×Nt time direction periodic lattice, with space-time
cut-off a andaNt = 1/T andaNr = R.

After the partition function is character expanded (1.7) one can considervarious contributions
to it from minimal surface elements bounded by a single loop∂A

f ({a};∂A) ≡ 1+ ∑
i6=0

aidiχi(∂A), (2.1)

The contribution to the partition function of two such surface elementsA andB with a common
boundaryA∩B, which is integrated out, defines a new elementary surface

A B

f ({c};∂ (A∪B)) =
∫

d(A∩B) f ({a};∂A) f ({b};∂B) = 1+ ∑
i6=0

cidiχi(∂ (A∪B)), (2.2)

whereci = aibi. Thus the junction of the surfaces in the space of character coefficientsis repre-
sented by an ordinary product.

Now for any 2-dimensional surface one can integrate all the internal links (in this way joining
elementary surfaces). The resulting expression for the partition functionis

Z =
∫

∏
l∈∂A

dUl ∑
r

FA
r drχr(U∂A), (2.3)
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whereA = NrNt is the area of the total surface in plaquette units and∂A is the contour enclosing
the surface. A similar result follows for the partition function of the glued systemZn, but with the
corresponding surface areaAn = nA = nNrNt and perimeter∂An.

In order to evaluate the perimeter integral one needs to set the spatial boundary conditions
(BC). The free BC produces a trivial resultZ = FA

0 andSA = 0. Therefore we set the periodic BC.
The perimeter integrals forZ andZn result in

Z :
∫

dV
∫

dUχr(UVU†V †) =
∫

dV
1
dr

χr(V )χr(V
†) =

1
dr

, (2.4)

Zn :
∫

dU1...dUn
1
d r

χr(U1)...χr(Un)

dn−1
r

χr(U
†
1 )...χr(Un†)

dn−1
r

=
1

d2n−1
r

, (2.5)

and one can obtain the entanglement entropy

SA = − ∂
∂n

Zn

Zn

∣

∣

∣

∣

n=1
= log(1+ ∑

r 6=0

cA
r )− ∑r 6=0 cA

r logcA
r /d2

r

1+∑r 6=0 cA
r

. (2.6)

It is interesting to note thatSA(l) is l-independent|l 6= 0, and its behavior is similar to end-point
phase transitionSA(l = 0) = 0.
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Figure 3: SU(2) entanglement entropy at various lat-
tice β and surface areaA.

In the expression for the entanglement
entropy (2.6) one can truncate the series if
A >> 1 or, equivalently, ifβ is small. Let us
be more specific and considerSU(2) gauge
theory. Thencr = I2r+1(2β )/I1(2β ), where
In(x) is the modified Bessel function. In
strong coupling limit

I2r+1(2β ) ≈ 1
Γ(2r +2)

β 2r+1, (2.7)

where 0< 2β <<
√

2r +2,

andcr = β 2r/(2r + 1)!. One can then sum
terms of expression (2.6) to a given precis-
sion to get

SA = ε(1+ log4− logε), ε =

(

β
2

)A

.

(2.8)

We present the results for the entanglement entropy of 1+1 dimensionalSU(2) gauge theory
as a function of the lattice coupling for various surface areasA = 1,2 and 10 in Fig. 3. ForA = 1
we also plot the strong coupling perturbation result.
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2.1 Higher dimensions: Migdal-Kadanoff treatment

Figure 4: Illustration of the
Migdal-Kadanoff procedure.

The higher dimensionalSU(N) gauge theories cannot be
solved exactly, however the Migdal-Kadanoff (MK) approximate
approach is known to produce robust results in studies of phase
structure of the models. The standard MK decimation procedure
(λ -transformation) inD = d + 1 dimensions is defined by the
following recursive steps (see Fig. 4)

e−S′p(U) =

[

∑
r

FA
r drχr(U)

]ζ 1−b

, (2.9)

Fr =
∫

dUe−ζ bSp(U) 1
dr

χ∗
r (U).

Hereλ is the scaling factor of the renormalization group (RG)
transformation,ζ = λ D−2 is the factor by which we strengthen
the interaction on the resulting coarser lattice andA = λ 2 is the
surface of the new elementary plaquette in units of plaquettes of
the underlying fine lattice. One can choose between two orderings of bondmoving and strength-
ening of the couplings steps:b = 0 corresponds to Migdal, whileb = 1 to Kadanoff prescription.

As an example consider a gauge theory formulated in a 2+1 dimensional box. One can then
decimate out all bulk degrees of freedom and be left only with the perimeter integral. Setting free
boundary conditions one then gets

Z =
∫

dUdV f ({cxy,i};U†VUV †) f ({ct,i};V ) = 1+ ∑
i6=0

cxy,i + ∑
i, j 6=0

cxy,id jct, jD
i
i j, (2.10)

where
f ({cz};∂A) ≡ 1+ ∑

i6=0

dicz;iχi(∂Az), z = ±x,±y, t (2.11)

and

Dk
i j =

∫

dV χk(V
†)χi(V )χ j(V ) =

(

k
n1µ

)(

k
νn1

)∗(
k i j
µ n2 n3

)∗(
k i j
ν n2 n3

)

(2.12)

are coefficients of the Clebsch-Gordan seriesD (i) ×D ( j) = ∑k Dk
i jD

(k) for the Kronecker product
of irreducible representations (see [2] for details).

1/T

. . .

l

R

Figure 5: Zn for 2+1 dimensional theory.

Now we can apply MK procedure in order to com-
pute the partition functions for ordinaryZ and gluedZn

systems, see Fig. 5. In order to cancel out the contribu-
tion from the bulk we cary out decimations forZn and
Z in exactly the same manner. First we start with the
standard MK decimation procedure (λ -transformation)
(2.9). The decimation should be altered when the lat-
tice spacing becomes equal tol (the smallest scale in
the problem). This affects onlyl-plaquettes, which have
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one link spanning the entangled region. In this case one
still can move plaquettes inD−2 direction but the tiling
is done withλ plaquettes

e−S′p;l(U) =

[

∑
r

Fλ
r drχr(U)

]ζ 1−b

, Fr =
∫

dUe−ζ bSp;l(U) 1
dr

χ∗
r (U). (2.13)

We refer to such a procedure asρ-transformation. All the other plaquettes are unaffected by this
change and are decimated according to the standard (λ -transformation) procedure.

If we choosel to extend iny direction, we can write the final formula for the entanglement
entropy [2]

SA = − ˙̃F t,0 + logZ − ḟn

Z
(2.14)

where the dot stands foṙX = ∂
∂n X

∣

∣

∣

n=1
and

Z = 1+ ∑
i6=0

(cs
x,ic̄

s
x,icy,i)

2 + ∑
i, j 6=0

(cs
x,ic̄

s
x,icy,i)

2d jc
s
t, jc̄

s
t, jD

i
i j, (2.15)

F̃s
t, j =

∫

dU

(

1+ ∑
i6=0

dic
s
t,iχi(U)

)n
1
d j

χ j(U
†), (2.16)

ḟn = ∑
i6=0

(cs
x,ic̄

s
x,icy,i)

2

(

log
(cs

x,ic̄
s
x,icy,i)

2

d4
i

(

1+ ∑
j 6=0

d jc̃t, jD
i
i j

)

+ ∑
j 6=0

d j ˙̃ct, jD
i
i j

)

. (2.17)

The final expression appears to be very complicated. However, one can analyze its behavior as
a function ofl. First we simplify the expression by choosing the geometry with specific symmetry,
so thatcs

t,i = cs
x,i = cs

i . Note that the dependance onl is encoded in the values ofcs
i . Note thatl

regulates whenλ -transformation is switched toρ-transformation, i.e. it sets the initial value for
cs

i (m0) underρ-transformations. Next we analyze the RG flow ofSU(2) gauge theory forcs
i (m) as

a function of number of iterationsm under Migdal recursion depending on the starting point. We
simplify the numerical simulation by considering a starting action in the wilsonian form onNl,t = 1
lattice. Note however that even after the first iteration step the action is of a single plaquette form,
but generally has all irreducible representations.

We show the projection of the RG flow on the fundamental-adjoint plain in Fig. 6.We observe
that depending on the starting couplingβ , which sets thel-scale, the flow is in different directions.
This is a clear indication of a phase transition like behavior. For the scale factor we chooseλ = 1.1,
which is known to map correctly the mixed action phase diagram [7]. The transition occurs at
βc ∈ 0.(62,0.65), which corresponds to length scalel∗c

l∗c /lc ∈ (1.56,1.66), (2.18)

wherelc = 1/Tc is the QCD scale.

3. Summary

We studied the entanglement entropy ind + 1 SU(N) gauge theory. Thed = 1 theory was
solved exactly. Setting periodic BC we obtained a non-zero universal value for the entanglement
entropy, which is independent of the sizel (end-point transition).
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Figure 6: Migdal decimation flow for 3+ 1 dimensionalSU(2) gauge theory. Projection tocs
1/2 andcs

1;
(β ,λ ) are indicated.

Using MK decimation we approximately computed the ratio of partition functions anden-
tanglement entropy ford ≥ 2. For 3+ 1 SU(2) gauge theory we demonstrated that there is a
non-analytical change in the RG flow of character coefficientsc which defineSA. This allowed us
to find the length scale where the transition occursl∗c /lc ∈ (1.56,1.66), which is comparable to the
valuel∗c /lc = 2 derived for infiniteN theory [1].

It is worth to point out that other measures of entanglement, such as the purity µ = Trρ2,
Tsallis entropySq = 1/(q−1)(1−Trρq) and Rényi entropyH1 = 1/(1−q) logTrρq (specifically
at q = 2) are all dependent oncs

i and therefore will show non-analyticity in the RG flow.
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