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1. Introduction
The study ok-strings has been an active research topic for many yeaddying several fields

of research such as AdS/CFT, MQCD, Hamiltonian approachdd_ attice. The investigation of
these flux tubes in several representations using lattienigues is important for a number of
reasons. First of all, we would like to know what effectivergl theory model describes the con-
fining flux tube at any representatiad. Secondly, lattice calculations provide significant resul
that might help people studyingstrings in diverse aspects to aim for the appropriate madet
attempt to study th& = 2 spectrum has been motivated by the fact that the non ttywiai the
excitation spectrum will provide us with significant infoation about the effective string theory
model that describes these states and moreover that thatexcspectrum of such observables has
not yet been explored systematically due to the compleXitiiese calculations.

In our last paper [1] we showed that the spectrum of closeédstulh fundamental fluxk(= 1)
can be very well described by Nambu-Goto (NG) effectivangttheory [2] in flat space-time. What
we actually showed is that our data is consistent with NG dmwery short lengths, comparable to
the physical length scale 1/, /0%, whereos is the string tension of the fundamental string. This
is in striking contrast with what one observes if comparesdhta to the Lischer [3] and Lischer
and Weisz [4] predictions. Apart from the energy level agreet, NG also predicts the degeneracy
pattern of the observed closed fundamental strings, shpthiat they are really described by an
effective string theory that belongs to the same univaysealass as NG.

The higher representation closed flux-tubes under invegsdig have lengthkthat range from
l,/0f ~ 15 to 45. We study the gauge grougl (4) and 2J(5) for B = 50.000 and 800
respectively, which corresponds to common value of théc&atpacing,a ~ 0.06 fm using the
conventiono = (440MeV)2. Our work consists of three different calculations. In thstfpart
we project onto thék = 2 antisymmetric and symmetric representations. In thersbpart we
calculate the spectrum &f= 2 strings without projection (i.e. using operators of type{U }2 and
Tr{U2}), and in the last part we calculate a potentially larger spet using the operators from the
second part and a new set of operators which are designeddoigg to unbound doubly wound
(w = 2) states.

During the last decade a lot of effort has been invested byatitiee community in studying
confining flux tubes. This includes the investication of bopien and closek—strings in different
representations. We refer the reader to some recent pd&ijeand references therein. For more
details on the calculation and relevant other reference®sgelonger forthcoming write-up [6].

2. Lattice Calculation: General
Our gauge theory is defined on a three-dimensional Euclidpace-time lattice that has been

toroidally compactified with x L, x Lt sites. The size of the string is equallipL ; andLt are
carefully chosen to be large enough in order to avoid anyefinilume effects. For the spectrum
calculation we perform Monte-Carlo simulations using ttamdard Wilson plaguette action:

SW:BZ [1—%Remp}, (2.1)

The bare coupling is related to the dimensionful couplirg through limy_o 8 = 2N /ag?. In
the largeN limit, the 't Hooft couplingA = g°N is kept fixed, and so we must scfle= 2N2/A [0
NZ? in order to keep the lattice spacing fixed. The simulation s& eombines standard heat-bath
and over-relaxation steps in the ratio 1 : 4. These are imgheed by updatingJ (2) subgroups
using the Cabibbo-Marinari algorithm.
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3. Lattice Calculation: Operators

Since we are interested in the excitation spectrurik ef2 strings, it is necessary to find a
way to project onto such states. The way to achieve this imtbdisuitable basis described by
good quantum numbers in which our operators will be encodledur case, this includes parity
P, which shows how a string transforms under reflections dverdangitudinal plane defined by
the longitudinal and temporal lattice directions. Thisgest that we need to introduce transverse
deformations in Polyakov loops, construct line paths thretigform in a certain way under such
reflections and then use the variational technique to extrecspectrum. In general, the more
operators we use the better the results we obtain; we thieretmstruct a plethora of Polyakov
paths trying to extract states with high overlaps.

We have also attempted to check whetherkhe?2 string spectrum includes unbound= 2
states, by using appropriate operators. These new stateg@cted to be described by frequencies
lower than those describing the= 2 bound states. Sonke= 2 operators look like they wind twice
around the torus, such as Eq. (3.2). However, the way we hexl dmnstructing them prohibits us
to project onto states with lower frequencies, since ea¢yaRov loop starts and ends at the same
lattice point within one lattice size. To this purpose we stamct Polyakov lines that wind twice
around the torus with transverse deformations at the jdithie@two lattices, as in Eqg. (3.3). We
use the square-pulse deformation as an example to dentertstra our operators are built:
15t setof k = 2 operators: (here and below thesigns determine the parity qf)

e=Tr{ L YP+Tr{ 1} (3.1)
2nd setof k = 2 operators:
e=Tr{_ o1 - 71 }xTr{ LI -1 } (3.2)
3 setof k = 2 operators that are expected to project amte 2 unbound states:
e=Tr{_ 11 }+Tr{— 11} (3.3)

Projecting onto th& = 2 antisymmetric representation

e=[Tr{ L Y¥P-Tr{ s - s N&[M{ U P-Tr{ -1} @4
Projecting onto thé& = 2 symmetric representation

o=[Tr{ 71 P+Tr{ i - oL N&[Tr{ 1 ¥P+Tr{ 1 - 17} (35)
All the line paths used in the calculation can be found in [Blr operators are also described by
the quantum numbers of winding momentara- 0,+1,+2,... in units of 27/l and the transverse
momentum which is set to zero. We also use the standard sigéddcking technique for the
Polyakov lines in order to enhance the projection of our afpes onto the physical scales.

For each combination of the quantum number$and g we construct the full correlation

matrix of operators and use it to obtain best estimates ®stiing states performing a variational
method applied to the transfer matfix= e 2.

4. Nambu-Goto String model

The action of Nambu-Goto is proportional to the surface afe¢he world sheet swept by the
propagation of the string; for closed strings this worldeghie a torus. The NG states correspond
to winding states characterised by the winding nunviaexhich counts how many times the string
wraps around the torus. The quantization of a Lorentz-iamabosonic string is successful only
in 26 dimensions due to the Weyl anomaly. It has been showvirtitsaanomaly is suppressed for
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large enough strings [7] and so we can still think of NG modedma effective string theory for long
strings in lower dimensiongX < 26).

The NG energy spectrum corresponds to phonons travellowgelise and anticlockwise along
the closed string. The single-string states can be destchilgethe winding numbew, by the
total contribution in energy from left and right moving ploms N, andNg, by the centre of mass
momentum which is set to zeffiym,, = 0, and finally by the momentum along the string axis in
units of 2/l with q=0,+£1,+2,.... The above quanta are not independent, and they obey the
level matching constraimtl. — Ng = qw.

The string states can be characterised as irreduciblesemetions of th&O(D — 2) group,
which rotates the spatial directions transverse to thagtkis. In ourD = 241 case this group
becomes the transverse parity with eigenvalBes (—1)"umber of phonons Fina|ly, the energy of a
closed-string state, described by the above quantum nenitreanyD, is given by the following

relation: NL+Nr D-2 21y 2
> o2 + i . (4.1)

Apart from the NG effective-string theory model obtainedairstring theoretical context, other
string theoretical effective models have been proposec firkt approach came up in the early
eighties by Lischer for the case wf= 1 andq = 0 in [3]. His result has been extended in [4],
where the authors used an open-closed string duality andsietpinteraction terms to show that
the spectrum of a closed flux tube in 2+1 dimensions is given by

EZ=(ol)®+8mo (n— 2—14> +0(1)1%). (4.2)

Noting that the two first terms on the right hand side of EqR)4re the predictions of the NG
model forg = 0 andw = 1 (expanded to first order in/o), we use the following ansatz to fit our
results and give empirical non universal corre&ti@r,aﬁo the energy.

E4 = Eig — a(IT;)p, p>3 (4.3)
5. Results: Symmetric and Antisymmetric representations

In this section we present our results from the projectioto dhe totally antisymmetric and
symmetric representations. The results have been obtéime8U (4) with f = 50.000 and for
U (5) with B = 80.000. The basis we have used consists-@0 operators of the type: Egs. (3.4,
3.5) and the energies were obtained using single cosh fits.

By focussing on the projection onto the antisymmetric repngation, we realise that the
ground state folP = + andq = 0 can be adequately described by NG with non universal cor-
rectionsCs of order&'(1). This is in striking contrast with what one observes for tiledamental
representation, for which this correction is much smakee(Table 1 and right panels of Fig. 2).
The first excited state for the same combination of quantumbaus seems to be approaching the
NG prediction slowly with quite large deviations (left péef Fig. 1).

It would be very interesting to see what can be obtained fioennion-zero longitudinal mo-
mentumq= 1,2 data. The lightest state has only one phoaot}0 > and is consequently described
by P = — andq= 1. The right panel of Fig. 1 shows that this state is remagkalell described by
the NG prediction (red line). The next two states (red andilaith g = 2 also have a non-trivial
phonon structurea_»|0 > for P = — anda_ja 1|0 > for P = +, and are degenerate in the way
NG predicts. The last two states wifli= 1 which have a much more complicated phonon structure
with movers of both kinds attached on the vacuum, deviat¢ mdoe from theoretical predictions.

Ef neqw = (01wW)* + 870
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The general conclusion is that torelon states that correspm string states with phonons of
only one kind, either left or right moving, are well-appnamdted by NG. In contrast, torelon states
with both kinds of movers have much higher deviations. Forenuetails on the phonon structure
of the string states, see our longer write up. Similar reswith less accuracy have been observed
for the symmetric representation. It is worth mentioningt tates corresponding to the symmetric
representation are massive, making the energy extraatiexteemely difficult task.

We have also found that the string tension of the ground $tatéhe symmetric (2) and
antisymmetric (2) representations &f = 2 string is remarkably close to the prediction of Casimir
scaling. For example, fod8J (5) and 3 = 80.000 we find that(ozs/0t), — (02s/0f ) ~ —3.2%
an%(ogA/of)L — (02a/0¢) ~ +2.2% where L(C) sgands for Lattice(Casimir).
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Figurel: Results from tﬁ%rojection onto the= 2 antisymmetric representatlié?fﬂr: 50.00 andN = 4.
Both plot parameters have been expressed in dimensiomiésslueft panelThe first two energy levels for

P = + andqg = 0 as a function of the string length. The blue lines preseniN& predictions for the ground
and first excited states and magenta line presents the bestdithe ground state which has been extracted
using the fitting ansatz. Right pang&he first five energy levels far= 1, 2 as a function of the string length.

6. Results: k=2 Spectrum: Group SU(N) or Center Zy?

Previous research [8] has shown that non-trivial boknstkings really exist foN < «. The
ground state of &-string is stable and corresponds to the totally antisymmegpresentation;
this is the representation of -ality k with the smallest string tension, in both the Casimir sealin
and the MQCD scenarios. Flux tubes in different represiemziZ will be unstable and screened
down by gluons to the totally antisymmetric one. Howevestahle strings are also expected to be
visible, since they appear as nearly-stable excited siratbe energy spectrum of the string if the
amplitude of the gluon screening is small enough.

To investigate whether the energy spectrum includes ulestaix tubes of representations
different than the antisymmertic, we need to use a basisafbdprs of type: Egs. (3.1, 3.2). Once
more we perform calculations f@J (4) with 3 = 50.000 and forSJ (5) with 3 = 80.000. By
comparing our results to what we have obtained in Section Siwgethat ourk = 2 spectrum
can be described by two sectors, which belong to two diffeireaducible representations, the
totally antisymmetric and the totally symmetric. We als@eidve that the ground state for each
different configuration of the quantum numb&sandq is always antisymmetric, but the rest of
the spectrum has a much more complicated structure, sieceniergy levels of the two different
irreducible representations cross.

In the three left panels of Fig. 2, we present the energy ®¥eeithree different string lengths.
The towers show that each state is nearly entirely antisymiora@ symmetric with an overlap close
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Figure2: Three left panelsEnergy towers for three different string legthg/@t ~ 2.1, 3.1, 4.2fm) where
we present the energies of the six lowest states inkthe2 spectrum ofUJ (4) for P=+, g =0 and

B =50.000 vs. the Overlap onto the particular irreducible repreg®on. Data in Red(blue) corresponds
to the projection onto the antisymmetric(symmetric) repreation. Two right panel§&round states of the
fundamental representation (second from the right)laa® antisymetric representation f8d (5), P = +,
g= 0andp = 80.000. In red are the NG predictions and in blue are our fits.

| | a?o | C3 | x¥/do.f ]
K= 1 for 9J(4) andB — 50,000 | 0.01715842) | 0.19384) | 0.862
k=2 for U (4) andB — 50,000 | 0.02321839) | 2.64(18) | 1535
k=1 for U (5) andB — 80.000 | 0.01684919) | 0.01845) | 0.2415
k=2 for 9J(5) and — 80.000 | 0.02584939) | 2.14(17) | 0613

Table 1: Fits using equations 4.1 and 4.3.

to 1. The guide lines demonstrate how the energy levelsnalterfrom being antisymmetric to
being symmetric. Our results show clearly that khe 2 closed strings know about the full group
theoretical structure dJ (N) rather than just about its centfg.

7. Results: Unbound w = 2 states

In this section we present the results from our attempt tgept@nto unboundv = 2 string
states. We mentioned above that such states require neataseconstructed in such a way that
they will give rise to them. The way to check whether theséestaeally exist is to perform the
same calculation as in the previous section with an extebdsis that includes the new operators,
and then to compare the new results to the ones obtainecebdfbis new extended basis consists
of approximately~ 240 operators.

The calculation shows that by using this new extended bdsiperators we get states that
could not be seen before. We also observe that the use ofrieeseperators enhances the overlap
onto the other bound states and thus decreases their errors.

In Fig. 3 we demonstrate that the new data3or(4), P = — andq = O indeed contain extra
states. The red line presents the NG prediction for a doubidimg number stringv = 2 with the
fundamental string tensiooi;. As can be seen, it is close to some of the new states appearing
the spectrum. This suggests that it is highly plausible tiveée new states belong to an effective
string theory model in the same universality class as théldauinding number NG string. Similar
results have been observed for the cas8Ufb).
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Figure 3: First few states foB8U (4), P= —, q= 0, andf3 = 50.000. In blue(red) we present the= 1(2)
NG prediction witha = 02a(0r). Left panel results with operators of type: Egs. (3.1, 3.2). Right pane
results with operators of type: Egs. (3.1, 3.2, 3.3) — it &aclthat new states appear in the spectrum.

8. Summary

We have calculated the energy spectrum of cldsed? strings in 2+1 dimensions fod = 4
and 5 ang3 = 50.000 and 8MO00 respectively. The calculation is divided in three pdrighe first
part we project onto thk= 2 symmetric and antisymmetric representations, in therskpart we
calculate theék = 2 spectrum using the basis that includes operators of tieeTgjt 12 and T{U?}
and in the third part we calculate the= 2 spectrum using the operators of the second part and
in addition the operators that have been constructed in awedy to project onto unbound = 2
states. Each calculation has been performed for differaritigs and longitudinal momenta.

What we observe is that olir= 2 spectrum falls into sectors that belong to two irreducible
representations dJ (N), namely the symmetric and the antisymmetric. This showskistrings
know about the full gauge group and not just about its cemfe.also demonstrate that tke= 2
antisymmetric representation is clearly well describedhgyNG model and there is also evidence
that so is the symmetric with larger deviations. Finally, fiel that thew = 2 spectrum has
unbound states that can be accommodated in a model thagbdimthe same universality class as
thew =2 NG model.
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