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The random percolation model can be viewed as the dual of a well defined confining gauge theory;

since this theory, having no Monte Carlo dynamics at all, is simple to simulate, it is possible to

study the properties of the flux tube with very high precision; we show it can be described by

the effective string picture. Our results are lattice regularisation independent, therefore they are

well defined also in the continuum limit, and, for the first time in a gauge theory, it has been

possible to determine the next-to-leading quantum corrections throughout the computation of the

T6 coefficient of the Taylor expansion ofσ(T). Furthermore, this coefficient results to be related

to the universal ratioTc/
√

σ0.
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1. Introduction: the effective string theory

The assumption behind the effective string theory is that the color flux connecting a pair of
quark is squeezed inside a thin flux tube; as a consequence, the confining potential rises linearly.
According to this picture the flux tube should behave as a free vibrating string.

Unfortunately, the action of this effective theory is unknown; the simplest assumpion is that it
is described by the Nambu-Goto action, which is proportional to the string worldsheet area.

We try to summarize the outcome of many studies on this argument discussing some properties
of the first terms of the low temperature expansion of the string tension (the first termσ0 is the zero-
temperature string tension):

σ(T) = σ0− (d−2)
π
6

T2 + ∑
n≥3

cnTn . (1.1)

The second term, the analogue of the Lüscher term at finite temperature which was calculated in
Ref. [1], does not depend on the gauge group and is expected to be independent of the interaction
terms of the effective theory. Thanks to a certain open-closed string duality it was shown that for
any dimensionalityc3 = 0 and, in three dimensions,c4 is universal [2]; hence, it coincides with the
value calculated in the NG model [3, 4]:

c4 = −(d−2)
π2

72σ0
. (1.2)

Using a different approach to the effective string theory, Ref. [5], the above results were confirmed
for all values ofd.

In this paper we will evaluate the coefficientscn up ton= 6, in a simple, but not trivial, model:
the gauge theory dual to the 3d percolation model. All of the date agree with the universal values
of c2 andc4 and lead toc5 = 0 andc6 = π3/

(

Cσ2
0

)

, whereC≃ 300.

We decided to focus our attention to the behaviour of the Polyakov-Polyakov correlation func-
tion 〈P(0)P∗(r)〉 at finite temperatureT = 1

aℓ in (2+1)-dimensions;r is the distance between the
Polyakov loops,ℓ is the time extent of the lattice anda is the lattice spacing.

The functional form of the correlator has been calculated at the next-to-leading order (NLO)
in Ref. [4]:

〈P(0)P∗(r)〉NLO =
e−µℓ−σ̃ rℓ

η(τ)d−2

(

1− (d−2)π2ℓ[2E4(τ)−E2
2(τ)]

1152σ̃ r3 +O

(

1
r5

))

, (1.3)

whereη is the Dedekind function,E4 andE2 the two Eisenstein functions andτ = iℓ/(2r).

Using Eq. (1.3) one can find, for asymptotically larger:

σ(T) = σ̃ − π
6

T2− π2

72σ̃
T4 = σ0−

π
6

T2− π2

72σ0
T4 +O(T5) . (1.4)

Note here the difference betweenσ̃ andσ0: σ̃ = σ0 +O(T5).
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2. The gauge theory dual to the percolation model

In this paper we study a particular gauge theory, first introduced in Ref.[6], that is dual to the
random percolation model. A more complete account will be presented in Ref.[7].

It is known in three dimensions it is possible to study a well definedSQ-gauge1 theory dual
to theQ-state Potts model through the Kramers-Wannier duality [8]. Thanks to the fact one can
map some gauge invariant observables, such as Wilson loops and Polyakov correlators, into the
corresponding quantities of the spin model, it is numerically convenient to inspect the properties of
the dual theory instead of those of the gauge model. The ingredient which isthen fundamental in
our approach is the Fortuin-Kasteleyn reformulation [9] of theQ-state Potts model, by which it is
possible to determine gauge observables in a very efficient way. This approach, that forQ > 1 is
only a powerful numerical method, can be applied to the random percolationmodel whose gauge
formulation is not known: it is the gauge theory in theQ→ 1 limit.

The key ingredient is the method used to calculate the Wilson loops in this setup: we define a
procedure to determine its value studying some topological properties of the dual model.

The connected components of the graph, formed by active links, are known as clusters;Wγ is
the value of the Wilson loop associated with a loop with contourγ. We setWγ = 1 if there is no
cluster topologically linked to the contourγ, otherwise we setWγ = 0. The same linking properties
are used to determine the Polyakov-Polyakov loop correlators〈P(0)P∗(r)〉: at finite temperature
the contourγ is ar × ℓ rectangle, with two sides identified.

Another interesting study of this model, related to the monopole mass, can be found in [10].

3. Simulations

The idea behind this work is not only to verify whether one can observe thepresence of shape
effect due to rough fluctuations of the string, in agreement with the universality predictions of the
effective string picture (as a matter of fact we have discussed this point inRef. [11]); we also would
verify that our results are not regularisation dependent. In other words, we would discuss if our
results describe a “real” phenomenon and not a lattice/model artifact.

We therefore study five different systems (see Ta- Lattice p ℓc = 1/aTc

SC bond 0.272380 6
SC bond 0.268459 7
SC bond 0.265615 8
SC site 0.3459514 7

BCC bond 0.21113018 3

Table 1: The five systems simulated.

ble 1) characterized by different occupancy probabil-
ity p, different kind of percolation (site or bond) and
different geometry of the lattice (simple cubic lattice
(SC) and body-centered cubic lattice (BCC)).

We worked on a lattice of sizeL2× ℓ, whereℓ,
the inverse of the temperature, was chosen such that
0.3Tc . T . 0.8Tc. The value of the spatial size was
L = 128 which was in most cases sufficient to account
for the infinite volume limit. Just in the caseℓc = 8, simulated atℓ = 10 andℓ = 11, we found a
sizable dependence on the lattice sizeL; in this case we performed further simulations on larger
lattices in order to extract the correct value ofσ̃ using the scaling relation (ν = 4/3 is the termal
exponent of 2d percolation model):

σ̃1/L = σ̃ −cL−1/ν . (3.1)
1SQ is the symmetric group.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
6
4

Confining string beyond the free approximation: the case of random percolation Pietro Giudice

For each system, we measured〈 P(0)P∗(r) 〉 by varying the distance between the two Polyakov
lines fromr = 8 to r = 50; to reach an acceptable statistics, we collected data from 105 configura-
tions for each value ofp andℓ.

The algorithm used, described in detail in Ref. [6], is basically aimed at determining the linking
properties of clusters with the Polyakov-Polyakov contour.

4. Numerical results

Our numerical results are compared with the expected behaviour of the Polyakov-Polyakov
correlation function given in Eq. (1.3). Being an expression valid in the infrared limit we use a
sliding windowanalysis to determine the correct values of the fitted parameterσ̃ : we fitted the data
in the rangermin ≤ r ≤ rmax by progressively discarding the short distance data, varyingrmin but
fixing the value ofrmax= 50a (see Fig. 1). In all five sistems considered a large plateau appears for
all values ofℓ not too close toℓc, showing the stability of the fits and so the suitability of the string
picture to describe our data. It is important to note that, as Fig. 1 shows, there are different values
of the string tension for different values ofℓ, i.e. ofT. In other words, the value of̃σ is not yet the
string tension at zero-temperatureσ0; the formula Eq. (1.3) is not the exact formula because it only
takes into account the temperature dependence up to the orderT4 (see Eq. (1.4)). We studied the
dependence of̃σ on ℓ and we verified, in all cases, that foraT = 1/ℓ low enough the correction is
proportional toT6 (see Fig. 2). Therefore, we used the value ofσ̃ to determine the value ofσ(T)

by Eq. (1.4), i.e. we reconstructed the correct dependence of the string tension on the temperature;
then we used these data to perform a new fit to determine the first model-dependent term by means
of the Ansatz:

σ(T) = σ0−
π
6

T2− π2

72σ
T4 +

π3

Cσ2
0

T6 +O(T8) . (4.1)

Thereby, we can identify stable values both for the zero-temperature string tensionσ0 and the
coefficientC, see Table 2.

Lattice ℓc = 1/aTc C a2σ0 Tc/
√

σ0

SC bond 6 291(7) 0.012612(6) 1.4841(4)
SC bond 7 281(5) 0.009234(5) 1.4866(5)
SC bond 8 297(5) 0.007059(5) 1.4878(5)
SC site 7 307(9) 0.009399(8) 1.4735(6)

BCC bond 3 295(14) 0.0474(4) 1.531(7)

Table 2: The parametersC anda2σ0 in the fit (4.1) for the numerical experiments listed in Table1. The last
column is the universal ratioTc/

√
σ0 as obtained by combining the second and the fourth columns.

Note that the five values ofC coincide up to the statistical errors. The value ofTc/
√

σ0,
obtained by combining the precise determination ofa2σ0 with the deconfined temperaureTc, is
an important universal quantity which characterizes the particular gaugetheory; the small varia-
tions appearing in Table 2 are presumably due to the corrections-to-scalingthat we have neglected.
Nonetheless, we can assert the value closer to the continuum limit is that obtained in the simulation
with bond percolation andℓc = 8 where statistical and systematic error were better under control;
therefore we will use, in the following,Tc/

√
σ0 = 1.4878(5).
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If we plot the adimensional ratioσ(T)/T2
c versus the reduced temperaturet = (T −Tc)/Tc

it turns out that all data liealmoston a unique curve, see Figure 3; this non-universal behaviour
is related to the fact the five different systems are characterized by different “universal” value of
the quantityTc/

√
σ0 and the adimensional variables used are very sensitive to it. As a matter of

fact, if we impose the value ofσ(T)/T2
c is the same for all systems, i.e. we determine for each

system a newTc value by whichTc/
√

σ0 = 1.4878(5), all data fall on a unique universal curve as
Figure 4 shows. This is the most important result of this work because it shows our results are
independent of the regularisation used, therefore we are studing a “real” gauge theory well defined
in the continuum limit.

It is interesting to note that the values ofC and ofTc/
√

σ0 can be determined with only two
pieces of information: (1) the data are all in the scaling region and (2) they show a linear behaviour
in the range−0.55 < t < −0.225. This means we can impose the two following equations to
coincide in the above range (S= σ0

T2
c

andx = T
Tc

):

σ(L)

T2
c

= S− π
6

x2− π2

72S
x4 +

π3

CS2x6 , (4.2)

σ(L)

T2
c

= A(x−1). (4.3)

Immediately, without using numerical data, it is possible to determineC ≃ 290 andTc/
√

σ0 ≃
1.4884; these two values are remarkably close to those obtained using the numerical data, see
Table 2. In Figure 4 we plot Eq. (4.2) (dashed line) and Eq. (4.3) (dottedline) using those values;
the numerical data lie on the two curves in the scaling region. This is an importantobservation
because it means the two quantity,C andTc/

√
σ0 are constrained to each other in that region.

5. Conclusions

In this paper we have studied, by numerical simulation, the gauge theory dual to the percolation
model; we can conclude it is possible to describe the long distance dynamics ofthis theory by
means of an effective string picture. Our numerical experiment demonstrate that the quantities
which characterize the effective string theory do not depend on the specific regularisation used.
Moreover, we determined with high precision the value ofσ(T)/T2

c and, for the first time in a
gauge theory, we have determined the value of theT6 coefficientC of the string tensionσ(T).
Furthermore, it was possible to show that the universal ratioTc/

√
σ0 and the coefficientC are

bound together in the scaling region.

References

[1] R. D. Pisarski and O. Alvarez, Phys. Rev. D26 (1982) 3735.

[2] M. Lüscher and P. Weisz, JHEP0407 (2004) 014 [arXiv:hep-th/0406205].

[3] J. F. Arvis, Phys. Lett. B127 (1983) 106.

[4] K. Dietz and T. Filk, Phys. Rev. D27 (1983) 2944.

[5] J. Polchinski and A. Strominger, Phys. Rev. Lett.67 (1991) 1681.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
6
4

Confining string beyond the free approximation: the case of random percolation Pietro Giudice

10 15 20 25 30
rmin

0.0070

0.0075

0.0080

0.0085 128x128x10
128x128x11
128x128x12
128x128x13
128x128x14
128x128x15
128x128x16
128x128x17

stat. 10
5

p=0.265615

rmax=50

NLO

σ̃

Figure 1: The fitted value of the string tensioñσ as a function of the minimal distancermin of the set of
Polyakov-Polyakov correlators considered in the fit; case of bond percolation withℓc = 8.
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Figure 3: Plot of the scaling variableσ(T)/T2
c versus the reduced temperature.
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Figure 4: Plot of the scaling variableσ(T)/T2
c versus the reduced temperature when we impose the value

of Tc/
√

σ0 = 1.4878. Dashed line is the plot of Eq. (4.2), dotted line is thatof Eq. (4.3).
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