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1. Introduction

To understand the confinement phenomena of quantum chromodynamics (QCD) is one of the
most challenging problems in modern physics. The gluons and quarks are confined in hadrons
where a non-perturbative mode dominates. In such confinement regionsit is expected that the
transverse mode of gluons will be suppressed. The Landau-gauge gluon propagator calculated by
the large-lattice computation (SU(2) [1] andSU(3) [2] ) seems to have a flat point in the infrared
limit, not to be suppressed. In addition, in the case of the Coulomb gauge, the similar result has
been obtained in Ref. [3, 4], while more significant suppression has been observed in Ref. [5].

In this study a stochastic quantization with the Coulomb-gauge fixing term [6, 7]is employed
in order to obtain an observation on the infrared suppression of the transverse gluons left as a
problem. This method has some advantages in comparison with path-integral formulation: 1) This
does not require an iterative technique for fixing a gauge, so that one can expect the computational
time in advance; particularly, it may be desirable for large-lattice computations. 2) The gauge-
fixing term introduced by Zwanziger makes all the gauge configurations automatically go to the
Gribov region; that is, this term works as an attractive force. 3) The gauge-parameterα can be
changed at will, investigating the dependence onα for measurements. This algorithm has been
already applied to the gluon screening-mass calculation in Ref. [8]

A confinement dynamics of Coulomb gauge QCD has been discussed in the framework of a
Gribov-Zwanziger scenario [9, 10], which has been looked into recently. Although the infrared sup-
pression of the Coulomb-gauge transverse gluons has not been confirmed in the lattice simulation,
there are a lot of progress for it. In particular, theSU(2) andSU(3) calculations show that a color-
Coulomb ( instantaneous ) interaction provides a linearly rising potential at large distances, whose
string tensions are 2− 3 times larger than the usual Wilson-loop string tension[11, 12, 13, 14].
This results are expected from an inequality,Vp(R) < Vc(R), whereVp(R) andVc(R) are a physical
potential and the color-Coulomb potential [16]. This inequality is a necessary condition for the
color confinement; moreover, this remains even in the deconfinement phase[12, 13, 14]. In addi-
tion, it is confirmed that the effective string tension estimated by the color-Coulomb propagators
is also in agreement with this inequality[15]. Furthermore, in the Gribov-Zwanziger scenario, the
strong singularity of the confining gluons results from an infrared enhancement of Faddeev-Popov
(FP) operator of QCD. The practical numerical simulations [17, 18] showthat the density of the
low-lying eigenvalues increases with the lattice volume and the confinement criterion is satisfied.
Meanwhile, the color-Coulomb string tension is trying to be reproduced by a spectral-sum method
for the FP propagator [19].

2. Stochastic gauge fixing

The stochastic quantization is based on the Langevin equation that introduces virtual time in
addition to the Euclidean coordinate. Zwanziger introduced a gauge-fixingterm as

dAa
µ

dτ
= −

δS
δAa

µ
+

1
α

Dab
µ (A)∂νAb

ν +ηa
µ , (2.1)
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whereDab
µ (A) is the covariant derivative,τ is the Langevin time, andη is the Gaussian noise term.

The second term on the r.h.s. is a gauge-fixing term and theα is a gauge-fixing term. Here the
Coulomb-gauge condition∂iAa

i = 0 is adopted.

Additionally, Mizutani and Nakamura formulated this equation into a lattice version[20]. The
link variables,Uµ , are rotated through the following gauge transformation depending onτ,

Uµ(x,τ +∆τ) = ω†(x,τ)ei f a
µ ta

Uµ(x,τ)ω(x+ µ̂,τ). (2.2)

Here, f a
µ stand for a driving force,

f a
µ = −

∂S
∂Aa

µ
∆τ +ηa

√
∆τ, (2.3)

and the gauge rotation is given by

ω = eiβ∆aτa∆τ/α . (2.4)

If ω = I, Eq. (2.2) is a Langevin process on the lattice. Eq. (2.2) with Eq. (2.4) leads to the gauge-
fixing term as∆τ → 0. Eq. (2.2) means that the gauge rotation and Langevin step are executed
alternately.

3. Coulomb gauge QCD

The Hamiltonian of QCD in the Coulomb gauge can be given by

H =
1
2

∫

d3x(E2
i (~x)+B2

i (~x))+
1
2

∫

d3xd3y(ρ(~x)V (~x,~y)ρ(~y)), (3.1)

whereEi, Bi andρ are the transverse electric fields, the transverse magnetic fields and the color-
charge density, respectively. The functionV in the second term is made by the FP operator,M =

−~D~∂ = −(~∂ 2 +g~A×~∂ ),

V (~x,~y) =
∫

d3z

[

1
M(~x,~z)

(−~∂ 2
(~z))

1
M(~z,~y)

]

. (3.2)

In the Coulomb gauge, the transverse (first) term makes a physical gluon field. In the confinement
phase, one can expect that the transverse gluon in the infrared limit vanishes due to the gluon mass
going to infinity effectively. On the other hand, the source term gives a color-Coulomb instanta-
neous (confining) potential, which is required to build a bound state out of quarks. In addition, the
confining linearity of this potential results from accumulation of the low-lying eigenvalues of the
FP operator. Besides, the QCD in the Coulomb gauge has no negative normand thus a physical
interpretation is very clear. As a result, theqq (diquark) interaction in the color-3∗ channel was
calculated in this framework [21].

4. Gluon propagators

In the continuum theory the gluon propagators in the spatial direction are formulated as

3
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Figure 1: Volume dependence ofD(p)
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Figure 2: Gauge-parameterα dependence ofD(p)

Dab
i j (~q) = δ ab

[

δi j −

(

qiq j

~q2

)

D(~q2)

]

+α
(

qiq j

~q2

)

DL(~q2). (4.1)

We are now interested in the transverseD(p). For free-theory case, we haveD0(q2) = 1/q2

which diverges in the infrared limit. Meanwhile, if quarks are confined by the linear potential there
are no general formulations for it. Nevertheless, the expectationD(q2 = 0) = 0 has been discussed
by many authors (See Ref. [22] ).

On the lattice, the gluon (gauge) fields are defined as

Aa
i (x) = 2ImTr(Ui(x)T

a) (4.2)

whereT a are color-SU(3) matrices. In momentum space, the two-point function is given by

Dab
i j (q) =

〈

Aa
i (p)Ab

j(−p)
〉

, (4.3)

which are going to be measured here.

5. Numerical results

Here the gauge configurations are generated by using the quenched Wilson gauge action in
the stochastic quantization with the Coulomb gauge. The gauge couplingβs are 6.0 and 5.7. For
the small lattice,L = 12,18,24,32, after the 10k thermalization done, 100 gauge configurations
measured every 100 Langevin steps are used. In contrast, for the large lattice,L = 48,64, the 4k
thermalization and 40 configurations (10 steps separated ) are carried out. The Langevin step size
is fixed as only∆τ = 0.01; however, the gluon propagator does not strongly depend on∆τ as shown
in Ref. [8].

A numerical result ofDii(p) with α = 1 at β = 6.0 is shown in Fig. 1, in which the largest
lattice-volume size is approximately(6.4 f m)4 for 644. It is found that in the vanishing momentum
Dii(p) are not suppressed but do not diverge.
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The gauge-parameter dependence of the gluon propagators is shown inFig. 2. Here, for
α = 1.0,0.5 and 0.1, ∆τ = 0.01, while forα = 0.01,∆τ = 0.001. In the high-momentum regions,
the variation withα is very small, and so they are comparable; however, in the infrared region,
their behavior changes significantly withα . In particular, the smallest-α calculation gives a better
result.

6. Summary

We have calculated the gluon propagators in the confinement regions in the stochastic Coulomb-
gauge fixing. Our results show that the spatial-gluon propagator becomesflat in the infrared limit.
Moreover, we find that the infrared behavior of gluon is very sensitiveto variation of gauge-
parameterα .

In order to improve our results it may be important to know theα-parameter dependence more
extensively; for example, in addition to the gluon propagators, how the FP propagator (eigenvalue)
depends onα . Notice that the computational cost seriously increases asα decreases. This is the
reason why the gauge-fixing term in our algorithm is proportional to a factor ∼ ∆τ/α , which has
to be small enough to carry out numerical steps accurately.
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