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1. Introduction

To understand the confinement phenomena of quantum chromodynar@by {Qone of the
most challenging problems in modern physics. The gluons and quark®imfieed in hadrons
where a non-perturbative mode dominates. In such confinement ragisnsxpected that the
transverse mode of gluons will be suppressed. The Landau-gaume giopagator calculated by
the large-lattice computationqU (2) [1] and U (3) [2] ) seems to have a flat point in the infrared
limit, not to be suppressed. In addition, in the case of the Coulomb gaugdntiiar sesult has
been obtained in Ref. [3, 4], while more significant suppression hasdizserved in Ref. [5].

In this study a stochastic quantization with the Coulomb-gauge fixing term [6 erhployed
in order to obtain an observation on the infrared suppression of thevénaesgluons left as a
problem. This method has some advantages in comparison with path-integraldtion: 1) This
does not require an iterative technique for fixing a gauge, so thataonexpect the computational
time in advance; particularly, it may be desirable for large-lattice computation$he gauge-
fixing term introduced by Zwanziger makes all the gauge configuratiomsretically go to the
Gribov region; that is, this term works as an attractive force. 3) Thgegarametea can be
changed at will, investigating the dependencecofor measurements. This algorithm has been
already applied to the gluon screening-mass calculation in Ref. [8]

A confinement dynamics of Coulomb gauge QCD has been discussed imthework of a
Gribov-Zwanziger scenario [9, 10], which has been looked into tgceXthough the infrared sup-
pression of the Coulomb-gauge transverse gluons has not beemuahfir the lattice simulation,
there are a lot of progress for it. In particular, ®&(2) andSU (3) calculations show that a color-
Coulomb ( instantaneous ) interaction provides a linearly rising potentialgg thstances, whose
string tensions are 2 3 times larger than the usual Wilson-loop string tension[11, 12, 13, 14].
This results are expected from an inequaMyR) < V¢(R), whereV,(R) andV,(R) are a physical
potential and the color-Coulomb potential [16]. This inequality is a necggsardition for the
color confinement; moreover, this remains even in the deconfinement [i2a4e3, 14]. In addi-
tion, it is confirmed that the effective string tension estimated by the colole@dupropagators
is also in agreement with this inequality[15]. Furthermore, in the Gribov-Zigan scenario, the
strong singularity of the confining gluons results from an infrared ecdgraent of Faddeev-Popov
(FP) operator of QCD. The practical numerical simulations [17, 18] stmat/the density of the
low-lying eigenvalues increases with the lattice volume and the confinemenmiarrite satisfied.
Meanwhile, the color-Coulomb string tension is trying to be reproduced pgetl-sum method
for the FP propagator [19].

2. Stochastic gauge fixing

The stochastic quantization is based on the Langevin equation that intsoditcel time in
addition to the Euclidean coordinate. Zwanziger introduced a gauge-tiaingas

dAa 35S 1
d—r“ = o + aD;‘f}b(A)avAe +n, (2.1)
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whereDﬁb(A) is the covariant derivative, is the Langevin time, ang is the Gaussian noise term.
The second term on the r.h.s. is a gauge-fixing term andrtfsea gauge-fixing term. Here the
Coulomb-gauge conditiod A? = 0 is adopted.

Additionally, Mizutani and Nakamura formulated this equation into a lattice vefgi@djn The
link variablesU,,, are rotated through the following gauge transformation depending on

Uy (% T+AT) = w'(x, 7)€ MU, (x, T) w(x+ 1, T). (2.2)
Here, f3 stand for a driving force,

JS
fi= dAaAT-l—r]a\/ (2.3)

and the gauge rotation is given by
w = P TAT/a (2.4)

If w=1, Eq. (2.2) is a Langevin process on the lattice. Eq. (2.2) with Eq. (2.4} keeithe gauge-
fixing term asAt — 0. Eg. (2.2) means that the gauge rotation and Langevin step are executed
alternately.

3. Coulomb gauge QCD

The Hamiltonian of QCD in the Coulomb gauge can be given by

/ Px(EZ(X) + B2(X) / By (R ¥ (X9)p(Y)), 3.1)

whereE;, Bj andp are the transverse electric fields, the transverse magnetic fields anddhe co
charge density, respectively. The functi#nin the second term is made by the FP operdibe-
—Bd = —(3%2+9gAxd),

1 2 1
¥ (%,y) = /d3z [M 73 s (ZV)} . (3.2)

In the Coulomb gauge, the transverse (first) term makes a physical gilidnlfi the confinement
phase, one can expect that the transverse gluon in the infrared limiheardse to the gluon mass
going to infinity effectively. On the other hand, the source term gived@-&oulomb instanta-
neous (confining) potential, which is required to build a bound state owarkg. In addition, the
confining linearity of this potential results from accumulation of the low-lyingeriglues of the
FP operator. Besides, the QCD in the Coulomb gauge has no negativeandrthus a physical
interpretation is very clear. As a result, thg (diquark) interaction in the color*hannel was
calculated in this framework [21].

4. Gluon propagators

In the continuum theory the gluon propagators in the spatial direction areifated as
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Figure 1: Volume dependence @i(p) Figure 2: Gauge-parameter dependence db(p)
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We are now interested in the transveB). For free-theory case, we haiy(¢?) = 1/¢?
which diverges in the infrared limit. Meanwhile, if quarks are confined leylitrear potential there
are no general formulations for it. Nevertheless, the expectBgh= 0) = 0 has been discussed
by many authors (See Ref. [22]).

On the lattice, the gluon (gauge) fields are defined as

oib() - 6% & - (42 ) o) +a (4 ) o (4.1)

AX(X) = 2ImTr(U;(x) T?) (4.2)

whereT?2 are colorSJ (3) matrices. In momentum space, the two-point function is given by

DiF() = (AHPIAT(-P)). (4.3)

which are going to be measured here.

5. Numerical results

Here the gauge configurations are generated by using the quencheah \gélsge action in
the stochastic quantization with the Coulomb gauge. The gauge coyijdiage 60 and 57. For
the small latticel. = 12,18,24,32, after the 10k thermalization done, 100 gauge configurations
measured every 100 Langevin steps are used. In contrast, for tleddttige,L = 48,64, the 4k
thermalization and 40 configurations (10 steps separated ) are cartiebheu_angevin step size
is fixed as onhAT = 0.01; however, the gluon propagator does not strongly depedd as shown
in Ref. [8].

A numerical result oD;i(p) with o =1 at3 = 6.0 is shown in Fig. 1, in which the largest
lattice-volume size is approximate{§.4fm)# for 64*. It is found that in the vanishing momentum
Dii(p) are not suppressed but do not diverge.
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The gauge-parameter dependence of the gluon propagators is shéwq i2. Here, for
a =1.0,0.5and 01, At = 0.01, while fora = 0.01,At = 0.001. In the high-momentum regions,
the variation witha is very small, and so they are comparable; however, in the infrared region
their behavior changes significantly with In particular, the smallest-calculation gives a better
result.

6. Summary

We have calculated the gluon propagators in the confinement regions tn¢hastic Coulomb-
gauge fixing. Our results show that the spatial-gluon propagator bedtahigsthe infrared limit.
Moreover, we find that the infrared behavior of gluon is very sensitiveariation of gauge-
parameten.

In order to improve our results it may be important to knowdhparameter dependence more
extensively; for example, in addition to the gluon propagators, how thedéaigator (eigenvalue)
depends om. Notice that the computational cost seriously increaseas dscreases. This is the
reason why the gauge-fixing term in our algorithm is proportional to afactht /o, which has
to be small enough to carry out numerical steps accurately.
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