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1. Introduction

Proton decay is a distinctive signature of many Grand UnifiedTheories (GUTs) although it has
yet to be observed experimentally. This non-observation ofproton decay has already ruled out the
simplest minimal supersymmetric models [1]. The current minimum bound on the proton lifetime
from Super–Kamiokande is 8.2×1033 years [2].

One expected decay channel for a protonN is N→M + l, with M a pseudoscalar meson and
l a lepton. This decay is induced by the exchange of either heavy gauge bosons or supersymmetric
particles. By integrating out these heavy particles, we obtain an effective Lagrangian which de-
scribes the low–energy behaviour. The partial decay width is proportional to the hadronic matrix
element〈M|O|N〉 with O the operator from the effective Lagrangian. A quantitativeestimate of
the matrix element is desired to probe the GUT scale physics of our models at current experiments.

There have been many previous attempts to measure the matrixelements [3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 17]. In this proceedings we present a determination of the matrix elements using
dynamical Domain Wall Fermion (DWF) configurations with 2+1 flavours. Our results have been
published in [16] and extend the ones obtained for 2 flavours of dynamical DWF in Ref. [17].

2. Partial proton decay width

For a generic proton decay channel, the partial decay width is,

Γ(N→M + l̄) =
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(2.1)

wheremN is the mass of the proton andmm the mass of the meson.Ci are the Wilson coeffi-
cients from the effective Lagrangian and the form factorsW0 can be related to the hadronic matrix
elements

PL
[

W i
0(q

2)− iq/W i
q(q

2)
]

u(k,s) = 〈M|O i|N〉 (2.2)

The three quark operatorsO i that apear in the partial width were identified on symmetry grounds
in Refs. [18, 19, 20] and are given by

O
RL = εabcua,T (x, t)CPRdb(x, t)PLuc(x, t) (2.3)

O
LL = εabcua,T (x, t)CPLdb(x, t)PLuc(x, t) (2.4)

Operators of this form will be used throughout this paper, sowe choose to define a generic
three quark operator

O
ΓiΓ j = εabcua,T (x, t)CΓid

b(x, t)Γ ju
c(x, t) (2.5)

whereΓi are matrices with two spin indices, labelled byS = 1, P = γ5, V = γµ , Aµ = γµγ5, T =
1
2{γµ ,γν}, T̃ = γ5

1
2{γµ ,γν}, R = PR = 1

2 (1+ γ5) andL = PL = 1
2 (1− γ5)

Using chiral perturbation theory to compute the matrix element in Eq. (2.2) yields for the
N→ π transition [14, 21]:

〈π0|ORL|N(k,s)〉 ≃ αPLu(k,s)

[

1√
2 f

+
D + F√

2 f

]

+ O(m2
l /m2

N), (2.6)

〈π0|OLL|N(k,s)〉 ≃ βPLu(k,s)

[

1√
2 f

+
D + F√

2 f

]

+ O(m2
l /m2

N), (2.7)
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whereα andβ are two low–energy constants (LECs) from the proton decay Lagrangian,ml is the
mass of the lepton andf is the pion decay constant. The combinationF + D yields the nucleon
axial charge,gA = 1.2695(29) [22], while the combinationF−D is related to the ratio of the zero–
momentum form factors for semileptonic hyperon decay,g1/ f1 [23]. The LECs can be calculated
at leading order from the proton to vacuum matrix elements.

〈0|ORL|N(k,s)〉= αPLu(k,s) 〈0|OLL|N(k,s)〉= βPLu(k,s), (2.8)

These same LECs appear in the expressions for other matrix elements (eg.N→ K+), see Ref [24].

3. Results

The analysis was performed on 2+1 flavor DWF ensembles with two different volumes at a
fixed inverse lattice spacing ofa−1 = 1.73(3) GeV. These are described fully in Refs. [25] and [26].
Multiple sources per configuration and several different types of smearing have been used to im-
prove the signal. As well as local sources (L), we employ gauge–invariant Gaussian smearing with
two different smearing radii (G and G∗) and gauge fixed hydrogen–like wavefunction smearing
(H). We adopt the same convention used in Ref. [27] for naming the smeared two–point functions.

We now define a class of two–point correlation functions

fΓ1Γ2,Γ3Γ4(t) = ∑
x

tr

[

〈OΓ1Γ2Ō
Γ3Γ4

(

1+ γ4

2

)]

(3.1)

with P = 1
2(1+ γ4) a projection matrix, andOΓiΓ j as defined in Eq 2.5. For example,fPS,PS is the

usual proton correlation function.
We can obtain the LECs from the vacuum matrix elements in Eq. 2.8 by forming ratios of

two–point functions.

Rα(t) = 2GN
fRL,PS(t)
fPS,PS(t)

→ α Rβ (t) = 2GN
fLL,PS(t)
fPS,PS(t)

→ β (3.2)

whereGN is the proton amplitude defined from the overlap of the protoninterpolating field, to the
normalized proton state.

〈0|OPS(~0,0)|N(k,s)〉 = GNu(k,s). (3.3)

Therefore, in order to calculate the LECs, first we calculatethe proton massmN from a corre-
lated fit to the effective mass of the proton correlation function fPS,PS,

mN,eff(t) = log

[

f (t)
f (t +1)

]

(3.4)

In all our correlated fits, we used an unfrozen correlation matrix. See Ref. [28] for analysis of
different estimates of the correlation matrix.

Second we calculate the proton amplitude from a correlated fit to an effective amplitude

G2
N,eff(t) =

1
2

fPS,PS(t)exp(mNt), (3.5)
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Figure 1: (a) is an effective mass plot and (b) is an effective amplitude plot for the nucleon. Both are calcu-
lated on the 243×64 dataset withamu = 0.01. The different colours in the effective mass plot correspond
to different smearings. Datasets are labelled with the smearing, i.e. LL. Those datasets labelled with a 2 use
the operatorfA4S,A4S(t), the rest usefPS,PS(t). ( c ) is a linear extrapolation of the ground state mass to the
chiral limit.
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Figure 2: (a) shows the ratioRα in Eq. 3.2 for the 243×64 dataset withamu = 0.03. The different colours
correspond to different source smearing. Horizontal linesshow the fit to the plateau. Also shown are linear
chiral extrapolation for the ratiosRα (b) andRβ (c) for the 243×64 dataset.

which uses the value of the proton mass we just calculated. Examples of an effective mass plot and
an effective amplitude plot are given in Fig. 1. along with a plot of an extrapolation of the nucleon
mass to the chiral limit.

Finally we calculate the LECs from the ratio in Eq. 3.2. An example plot forα is given in Fig.
2 along with extrapolations to the chiral limit for bothα andβ . Results from each of these fits as
well as results for the nucleon mass are summarised in Table 1.

4. Non–perturbative renormalization

For the non–perturbative renormalization (NPR) we use the MOM scheme renormalization of
the Rome-Southampton group. The renormalised operators are

O
A
ren = ZAB

O
B
latt (4.1)
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V ×Ls amud/ams amN a3α a3β
0.03/0.04 0.908(6) -0.00695(19) 0.00719(21)

163×32×16 0.02/0.04 0.819(8) -0.00605(31) 0.00606(30)
0.01/0.04 0.722(19) -0.00478(43) 0.00511(47)

chiral -0.00349(64) 0.00369(63)

0.03/0.04 0.892(10) -0.00689(33) 0.00621(38)
243×64×16 0.02/0.04 0.805(12) -0.00571(32) 0.00598(38)

0.01/0.04 0.720(10) -0.00508(29) 0.00486(28)
0.005/0.04 0.671(5) -0.00397(18) 0.00400(22)

chiral -0.00326(27) 0.00348(32)

Table 1: Results from fits described in this paper. The nucleon massesthe LECsα andβ are reported as a
function of the quark masses, for both lattices used in this study. The results of linear chiral extrapolations
are also reported in the last line of each column. All the results are given in units of the lattice spacing
a≈ 0.12 fm.

where A and B label the spin structure from the nucleon decay operators, eg LL, RL. These mix
with a third operatorOA(LV), soZAB is a 3×3 matrix. We shall callOLLORL andOA(LV) the chirality
basis of operators.

We want to calculate the non-perturbative amputated 3-quark vertex function of these operators

G
A
abc,αβγδ (p2) = εabc(CΓ)α ′β ′Γ′δγ ′〈Qa′a

α ′α(p)Qb′b
β ′β (p)Qc′c

γ ′γ(p)〉 (4.2)

where
Qa′a

α ′α = 〈Sa′a′′
α ′α ′′(p)〉−1Sa′′a

α ′′α(p) (4.3)

andΓ andΓ′ are the matrices which appear inOA

For convenience, we will work in the parity basis of operators SS-SP, PP-PS, AA+AV which
are related to the chirality basis of operators we are interested in via

LL =
1
4

(SS+ PP)− 1
4

(SP+ PS)

RL =
1
4

(SS−PP)− 1
4

(SP−PS)

A(LV ) =
1
2

AA− 1
2
(−AV ) (4.4)

We relate the amputated 3-quark vertex functions to the renormalization matrix Z by the renor-
malization condition. In the RI–Mom Scheme this is

Z−3/2
q ZBCMCA = δ BA (4.5)

Where the matrixM is,
MAB = G

A
abc,αβγδ (p2)PB

abc,βαδγ (4.6)

and the projection matricesPA
abc,βαδγ are chosen so that the renormalization condition is satisfied

in the free field case whereZq = 1 andZBC = δ BC. An example of a plot of the matrix M, after

5
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Figure 3: The mixing matrixM in Eq. (4.6) in the chirality basis,ΓΓ′ = {LL,RL,A(LV )}, as a function of
the lattice momentum squared for the 163×32 lattices withamu = 0.03. The off-diagonal mixing between
operators is highly suppressed.

rotating back to the chirality basis, is shown in Fig. 3. We see that as expected, the off diagonal
elements are negligible.

We now perform a mild chiral extrapolation and match to theMS scheme atµ = 2 GeV. This
gives

UMS←latt(2GeV )LL = 0.662(10) (4.7)

UMS←latt(2GeV )RL = 0.664(8) (4.8)

5. Conclusion

The errors quoted so far have been purely statistical, we also have systematic errors to consider
due to finite volume effects, extrapolating to the chiral limit, keeping the strange quark mass fixed
and a systematic error due to our treatment of the NPR.

From Table 1 we can see that the values for the LECs on the two different volumes, agree
within errors, from this we conclude there are no significantfinite volume effects. For the fixed
strange quark mass, we compare our result to theN f = 2 result from [17] we see there is very good
agreement. To estimate the error in taking a linear extrapolation to the chiral limit, we performed
an extrapolation both with and without the lightest mass point. This gave results differing by 18%
and 17% forα andβ respectively. For the NPR, we estimate a systematic error of8%, which is
dominated by the error in truncating the perturbative expansion for the matching factor at orderα2

s .
Adding all of these uncertainties in quadrature, we estimate the low–energy parameters renor-

malised atµ = 2 GeV to be:

α = −0.0112±0.0012(stat)±0.0022(syst) GeV3 (5.1)

β = 0.0120±0.0013(stat)±0.0023(syst) GeV3. (5.2)
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