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1. Introduction

Proton decay is a distinctive signature of many Grand Unifieelories (GUTS) although it has
yet to be observed experimentally. This non-observatioproton decay has already ruled out the
simplest minimal supersymmetric models [1]. The currentimum bound on the proton lifetime
from Super—Kamiokande isBx 103 years [2].

One expected decay channel for a probdis N — M + 1, with M a pseudoscalar meson and
| alepton. This decay is induced by the exchange of eithenhgawnge bosons or supersymmetric
particles. By integrating out these heavy particles, waioban effective Lagrangian which de-
scribes the low—energy behaviour. The partial decay wislfroportional to the hadronic matrix
element(M|Z|N) with & the operator from the effective Lagrangian. A quantitatégtimate of
the matrix element is desired to probe the GUT scale phys$ioaramodels at current experiments.

There have been many previous attempts to measure the relamvents [3, 4, 5, 6, 7, 8, 9, 10,
11, 12,13, 14, 15, 17]. In this proceedings we present amétation of the matrix elements using
dynamical Domain Wall Fermion (DWF) configurations with-24 flavours. Our results have been
published in [16] and extend the ones obtained for 2 flavotidywamical DWF in Ref. [17].

2. Partial proton decay width

For a generic proton decay channel, the partial decay wijth i

o= 2 (- ()]

wheremy is the mass of the proton ant, the mass of the mesorC' are the Wilson coeffi-
cients from the effective Lagrangian and the form factibscan be related to the hadronic matrix
elements

2

S CWG(N — M +1) (2.1)

R W6(aP) — igWg(e7)] u(k,s) = (M|6'|N) (2.2)
The three quark operator8' that apear in the partial width were identified on symmetiyumids
in Refs. [18, 19, 20] and are given by

ORt = AT (x t)CPrdP(x,t)PLUC(X,t) (2.3)
O = 3T (x,1)CRLdP(x,t)R US(x,t) (2.4)
Operators of this form will be used throughout this papennvsochoose to define a generic
three quark operator
O™ = 2T (x 1)CTdP(x, 1) juS(x,t) (2.5)
whererl’; are matrices with two spin indices, labelled 8y= 1, P = 5,V =y, Ay = Yu¥s, T =

%{Vuayv}v T= %%{Vuay\/}’ R=F= %(1"‘ ys) andL =R = %(1_ ¥5)
Using chiral perturbation theory to compute the matrix edemin Eq. (2.2) yields for the
N — mtransition [14, 21]:

(10" N(K,9) = aRLuk,s)| o+ 22| o/, (2.6
(IO NG9) = AUk |+ 2 EE | olme/m). 2.7)
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wherea andf are two low—energy constants (LECs) from the proton decaydragian,m is the
mass of the lepton andl is the pion decay constant. The combinatfor- D yields the nucleon
axial chargega = 1.269529) [22], while the combinatiorr — D is related to the ratio of the zero—
momentum form factors for semileptonic hyperon decay,f; [23]. The LECs can be calculated
at leading order from the proton to vacuum matrix elements.

(0]6”|N(k,s)) = aPLu(k,s) (0|6 |N(k,s)) = BRu(k,s), (2.8)

These same LECs appear in the expressions for other matresits (egN — K*), see Ref [24].

3. Results

The analysis was performed on 2+1 flavor DWF ensembles withdifferent volumes at a
fixed inverse lattice spacing af * = 1.73(3) GeV. These are described fully in Refs. [25] and [26].
Multiple sources per configuration and several differeipety of smearing have been used to im-
prove the signal. As well as local sourcés,(we employ gauge—invariant Gaussian smearing with
two different smearing radiiG and G«) and gauge fixed hydrogen—like wavefunction smearing
(H). We adopt the same convention used in Ref. [27] for namiagtheared two—point functions.

We now define a class of two—point correlation functions

o (14
fr1r27r3r4(t) = ztr [<ﬁrlr2ﬁr3r4 <Ty4>:| (31)
X

with P = %(1+ y4) a projection matrix, and’' "1 as defined in Eq 2.5. For examplipsps is the
usual proton correlation function.

We can obtain the LECs from the vacuum matrix elements in E§.bg forming ratios of
two—point functions.

frLps(t)
fesps(t)

fLLps(t)
fpsps(t)

Rq(t) = 2Gn Rg(t) = 2GN — B (3.2)
whereGy is the proton amplitude defined from the overlap of the protderpolating field, to the
normalized proton state.

(0|675(0,0)|N(k,s)) = Gyu(k, ). (3.3)

Therefore, in order to calculate the LECs, first we calcuthgeproton maseiy from a corre-
lated fit to the effective mass of the proton correlation tiort fpsps,

f(t)
m t)=1Io 3.4
wer(t) =log |- 3.4
In all our correlated fits, we used an unfrozen correlatiortrixa See Ref. [28] for analysis of
different estimates of the correlation matrix.

Second we calculate the proton amplitude from a correlated &n effective amplitude

Gﬁ’eﬁ(t) = %fpgps(t) exp(mNt), (35)
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Figure 1: (a) is an effective mass plot and (b) is an effective ampétpldbt for the nucleon. Both are calcu-
lated on the 2%x 64 dataset wittam, = 0.01. The different colours in the effective mass plot coroegp

to different smearings. Datasets are labelled with the simgd.e. LL. Those datasets labelled with a 2 use
the operatorfa,sa,s(t), the rest usdpsps(t). ( ¢ ) is a linear extrapolation of the ground state mass to the

chiral limit.
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Figure 2: (a) shows the rati®, in Eq. 3.2 for the 23 x 64 dataset witam, = 0.03. The different colours
correspond to different source smearing. Horizontal listeaw the fit to the plateau. Also shown are linear
chiral extrapolation for the ratioR, (b) andRg (c) for the 24 x 64 dataset.

which uses the value of the proton mass we just calculatedmiples of an effective mass plot and
an effective amplitude plot are given in Fig. 1. along withiat jpf an extrapolation of the nucleon
mass to the chiral limit.

Finally we calculate the LECs from the ratio in Eq. 3.2. Anmxde plot fora is given in Fig.
2 along with extrapolations to the chiral limit for bothand 3. Results from each of these fits as
well as results for the nucleon mass are summarised in Table 1

4. Non-perturbative renormalization

For the non—perturbative renormalization (NPR) we use ti@Mvscheme renormalization of
the Rome-Southampton group. The renormalised operaters ar

Ofen =250y (4.1)
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V x Lg amg/ams | amy ada ap
0.03/0.04 | 0.908(6) -0.00695(19) .0071921)
16 x32x 16 0.02/0.04| 0.819(8) -0.00605(31) .0060630)
0.01/0.04 | 0.722(19) -0.00478(43) .0051147)
chiral -0.00349(64) DM036963)
0.03/0.04 | 0.892(10) -0.00689(33) .0062138)
28 % 64x 16 0.02/0.04| 0.805(12) -0.00571(32) .0059838)
0.01/0.04 | 0.720(10) -0.00508(29) .0048G28)
0.005/0.04| 0.671(5) -0.00397(18) .0040022)
chiral -0.00326(27) @D034832)

Table 1: Results from fits described in this paper. The nucleon mabksdsECsa and are reported as a
function of the quark masses, for both lattices used in thidys The results of linear chiral extrapolations
are also reported in the last line of each column. All the ltssare given in units of the lattice spacing
a~0.12fm.

where A and B label the spin structure from the nucleon degeyaiors, eg LL, RL. These mix
with a third operator’AY), s0Z”B is a 3x 3 matrix. We shall cal*- &Rt and AW the chirality
basis of operators.

We want to calculate the non-perturbative amputated 3kquextex function of these operators

Dibc.apys(P°) = E¥°(CT)arp M5, QX (P QB (PIQT5(P)) (4.2)
where
oo = (S (P) 7 'S2% (P) (4.3)
andl" andl"’ are the matrices which appeardrf*

For convenience, we will work in the parity basis of operat8S-SP, PP-PS, AA+AV which
are related to the chirality basis of operators we are isterkin via

1 1
LL = 5 (SS+PP)— 2 (SP+PS)
1 1
RL = 7 (SS—PP)—7(SP—P9
ALV) = %AA—%(—AV) (4.4)

We relate the amputated 3-quark vertex functions to thermealization matrix Z by the renor-
malization condition. In the RI-Mom Scheme this is

Zq_S/ZZBCMCA — 5BA (45)

Where the matriM is,
MA8 = ga%c,aﬁyé(pz)PaBbc,Baéy (4.6)

and the projection matricd%’},cﬁaéy are chosen so that the renormalization condition is satfisfie
in the free field case whei®, = 1 andZ®¢ = 58°. An example of a plot of the matrix M, after
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Figure 3: The mixing matrixM in Eq. (4.6) in the chirality basi$,l"’ = {LL,RL,A(LV)}, as a function of
the lattice momentum squared for the32632 lattices witham, = 0.03. The off-diagonal mixing between
operators is highly suppressed.

rotating back to the chirality basis, is shown in Fig. 3. We Heat as expected, the off diagonal
elements are negligible.

We now perform a mild chiral extrapolation and match to kh® scheme at = 2 GeV. This
gives

uUMS—latt oGev) = 0.662(10) 4.7)
UMS—at(oGev)r. = 0.664(8) (4.8)

5. Conclusion

The errors quoted so far have been purely statistical, voetelge systematic errors to consider
due to finite volume effects, extrapolating to the chiralitirkeeping the strange quark mass fixed
and a systematic error due to our treatment of the NPR.

From Table 1 we can see that the values for the LECs on the tfferatit volumes, agree
within errors, from this we conclude there are no significtnite volume effects. For the fixed
strange quark mass, we compare our result ta\the: 2 result from [17] we see there is very good
agreement. To estimate the error in taking a linear extedjool to the chiral limit, we performed
an extrapolation both with and without the lightest masspadrhis gave results differing by 18%
and 17% fora and 3 respectively. For the NPR, we estimate a systematic err8@fwhich is
dominated by the error in truncating the perturbative esjanfor the matching factor at ordet.

Adding all of these uncertainties in quadrature, we estntla¢ low—energy parameters renor-
malised aiu = 2 GeV to be:

a = —0.0112+0.0012ay & 0.0022,5y GeV? (5.1)
B = 0.0120+ 0.0013 1y =+ 0.0023 sy GeV2. (5.2)
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