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We present a lattice calculation lofg, one of the low energy constants in Chiral Perturbation The-
ory, and the charged-neutral pion squared mass splittsiggulynamical overlap fermion. Exact
chiral symmetry of the overlap fermion allows us to reliabktract these quantities from the dif-
ference of the vacuum polarization functions for vector axidl-vector currents. In the context of
the technicolor models, these two quantities are read aS-fpfaesameter and the pseudo-Nambu-
Goldstone boson mass respectively, and play an importenirrdiscriminating the models from
others. This calculation can serve as a feasibility studpefattice techniques for more general
technicolor gauge theories.
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Spontaneous chiral symmetry breaking&B) of strongly interacting gauge theory may pro-
vide a natural mechanism for the electroweak symmetry breaking. A clamsnophysics models
based on this idea, so-called the technicolor models, has been studiesivetieffl]. In most of
those models, massless techni-quarks with weak charge are introdueegledak gauge bosons
acquire masses from theiySB. TheS-parameter may then be sizably affected, for which those
models can be strongly constrained through the electroweak precisionn@easts[[2]. Another
characteristic signal of the technicolor models, that may be observedldd@experiments, is the
presence of extra Nambu-Goldstone bosons (NGBs) which are naotlgatiee weak gauge bosons.
They are called the pseudo-NGBs (pNGBSs), since they must be madevenagsntroducing ex-
plicit breaking of the chiral symmetry of the techni-quarks in a model degr@ngay, otherwise
they would remain massless. Since $8ygarameter and the pNGB mass are consequences of strong
dynamics of the underlying theory, non-perturbative framework isireddior their calculation. In
previous studies, some model was involved in the calculaéian,[f]. The paper of this work is
already available in[J4].

In this work we consider two-flavor QCD as a testing ground of our methdddemonstrate
that the first principles calculation of those quantities is possible. In thisxiothe S-parameter
corresponds td', (or |5 in another convention), one of the low-energy constants of the chiral pe
turbation theory (ChPT), &8=—16mL (i) — {In(u?/m2) — 1/6} /1921%] with a renormalization
scaleu and the Higgs massy [P L}, is related to a difference of vacuum polarization functions
between vector and axial-vector currefit$’ , (6?) = N (¢?) — N\ (¢?) near the zero momentum
insertion. (A formula will be given in[{5).)

For the pPNGB mass, a mass formula that is valid for a wide range of technivoldels and
breaking patterns is knowi] [5]. The formula contains a nonperturbpéivewritten in terms of
the vacuum polarization functions. The charged pions in two-flavor QG esxample of pNGB,
as the electromagnetic interaction explicitly bre&k#?2) chiral symmetry and gives a finite mass
even in the massless limit of up and down quafks [6]. The correspondiag foanula is known
as the DGMLY sum rulef]7]

/ q2q I_IV A |mq 07 (1)

which gives the mass of charged pions at the leading order of the elegmeti@interaction. Here
f denotes the pion decay constant in the chiral limit. Note that neutral pion isasgagsthis limit.

In the continuum theory chiral symmetry guarantees that the dlfferEI{],}fQ\ ) exactly
vanishes in the absence of both explicit and spontaneous chiral symmediirtyg. Any remain-
ing difference in the absence of explicit breaking thus signals 8BS Therefore, the use of
exactly chiral fermion formulation is mandatory in the lattice calculation, in ordexwvtod fake
contributions td'l\(,llA(qz) due to non-chiral lattice fermion formulations such as the Wilson-type
fermions. Here we use the overlap fermigh [8], which respects exaetl dymmetry at finite
lattice spacings. Employing this fermion, we have successfully done a @reaiculation of the
chiral condensatg][9], which also requires excellent chiral symmetrgriva systematic errors.

We perform a two-flavor QCD calculation on a®:632 lattice at a lattice spacira= 0.118(2)
fm determined with the Sommer scalg=0.49 fm as an inpu{[10]. The quark masses in the lattice
unit areng=amy= 0.015, 0.025, 0.035, and 0.050, which roughly cover the range betWéeo
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1/2 of the strange quark mass. We exploit the gauge action which keep thedimal charge

Q in order to accelerate the dynamical fermion simulation with the exact chiral symifi€].

The main simulations are done in t=0 sector, using 10,000 trajectories. For each sea quark
mass, the measurements are made at every 50 trajectories. Statisticalrerestnaated from a
jackknife analysis with 100 jackknife bins each containing two consecote@surements. Details

of our configuration generation and the pion spectrum and decay ooasysis are found ifi [[LO]
and [11], respectively.

We calculate the current-current correlators for vector and axiabwearrents to obtain the
corresponding vacuum polarization functions. We use as the vectmmwﬁlz)zzmy,,(l—
aD/2mp)q, whereq; andqp represent different flavors of quarkid,the overlap-Dirac operator
in the massless limit, andy=1.6. The axial-vector curremﬁz) is the same buy, is replaced
by yu¥s. The factor(1—aD/2mp) is necessary to make theandA form an exact multiplet un-
der the axial transformation. Because of this exact symmetry leading to tregstorrelation,
even the lattice artifacts and statistical fluctuations cancel betw¥®eand AA correlators except
for the effects of ¥SB. Indeed, the statistical errors are much smaller than those of the @meviou
calculations of the/V correlator [IR]. The common renormalization constant 1.38423) is
determined nonperturbativelf J11].

Since the continuous rotational symmetry is violated on the latti€at) and the currents
we use are not conserved (df.][13]), the general form of thesatizurrent correlator reads

Mo (@) = Y 60T [ 370032 (0)] 10)

= ;B%Mném > MM (6P M @) )
n=
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whereJ =V or A. B{"” andCi™™ are scalar functions of lattice momenta=2rm,, /L with n,, an
integer ranging from-L/2+ 1 toL/2 (L=16 or 32 for spatial or temporal direction, respectively).
In the continuum limit, onIyBSO) andCﬁl’l) survive. BSO) could contain a power divergent contri-
bution due to a contact term, but the exact symmetry present between tbe ard axial-vector
currents guarantees that this contribution cancels in the diffefépgg— M,y . Coefficients other
thanBSO) andCSl’1> represent lattice artifacts. In the differerfdg,,, — Ma,y, these lattice artifacts
are negligible as numerically confirmed below.

We define a measure of the Lorentz-violating lattice artifacts by

A v
Ay = z Qulv <q2 - W) Mapv, 3)

which contains all oB{"” andC{™™ butB{® norc{*". Figurel shows, for J =V andA (top) and
their difference (bottom) as a function gt atmy=0.015. While we observe statistically significant
non-zero values of\; depending org?, the difference is orders of magnitude smaller than the
individual A;.  Similar plot is obtained fomy=0.050. This indicates that the Lorentz-violating
lattice artifacts indeed cancel in the differeridg,, — M,y and are insensitive toX&B or my.
Neglecting the Lorentz-violating terms, we analyze the difference

My gy —Magy = (62 — Gu6y) MY o — Gu6,nY 4)
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Figure 1: §° dependence df; (J =V or A) (top) and their difference (bottom). The result fog=0.015 is
shown.

Wherel'l\(,lz A and ﬂ\(,ol A represent the transverse and longitudinal contributions, respectively.
First we calculatd. (1) from I'I\(,le. At the next-to-leading order, ChPT predidis]|[14]

m2 1
£2 In{=2%)+35—H(X
”(vllA<q2)=—qf’§—8Lio(u>— ( )24n2 : (5)
\/1+x—1>+2]
VIFx+1 ’

wherex = 4m2/¢?, and i is a renormalization scale set equal to the physicaieson masa,.
Using the measured valuesmf; and f,; (m,; and f; in the lattice unit), we fit the data (nfﬂf,llA

at four quark masses witf] (5) to obtdif),(m,) varying fit range ofg?. Correlation among the
data points are ignored since each of all the data comes from diffesequaek ensemble (also see
below). It turns out that the fit including only the smallgdtpdint G2=0.038, which corresponds
to (320 MeVY) gives an acceptablg?/dof (~0.5). The fit is shown in Fig] 2 as a function of
My (circles and solid curve). Once the second smaligt~" (650 MeVY in the physical unit)
is included the fit becomes unacceptalgté /dof ~ O(40)). This may indicate the breakdown
of the chiral expansion at such a largé Our result from the smallesf® data isL}y(m,) =
—5.22(17) x 1073, Here, the error is statistical only.

We estimate the systematic error due to higher order effects of the chirahggp using a
modified fit function to cover a wider range qgf (see below). We obtain a slight negative shift,
0.3 x 1073, which is added to the systematic error. The finite size effect may be sizahlke fion-
loop effects, which is the third term ifi](5), since the lattice volume (1.§ fsot large enough.
We estimate its magnitude by replacing the momentum integral with a $urand i, are also
corrected following[[15]. Taking these corrections into account, we ditdta at the smallegt *
to () and obtair]o(m,)|v—« = —5.74(17) x 10~3 with x?/dof= 2.3 as shown in Fig] 2 (triangles
and dashed curve). We take the difference between these two resartestimate of the systematic
errors. We then quote

H(x)—(l+x)[ 1+x|n< (6)

1o(Mp) = ~5.2(2)(*3)(*5) x 10°°, (7)

where the first error is statistical, and the second and third are the estimstieehatic uncertainties
due to higher order effects gf and the finite size effect, respectively. Since only one valwg of
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Figure 2; qzl‘l\(,llA\azzo_o:;g as a function of quark mass. The fit results with (solid) antheut (dashed)
finite volume correction are shown.

included in the fit, the error from the chiral fit may be underestimated. Funtbre, other sources
of uncertaintyg.qg.finite lattice spacing and lack of a dynamical strange quark, exist. Nelesthe
(@) is already consistent with the experimental vai#09(47) x 103 [I§].

Next, we consider the squared-mass splitting between charged and pertsa The splitting
in the chiral limit solely comes through the electromagnetic interaction and is writtéelintegral
of qzl'l\(,llA as given in[(1). In order to avoid possibly large discretization effectseénatgeq?
region, we separate the whole integral region into two partg=2.0, and estimate each part as
follows.

For the lowery? region K 2.0), we fit the data to an ansatz

6212 B G 12 B G X(G)
R4+mg P+ 24m 1+ x5(Q3)%

YR () = — 2+ )
whereQ3 = ¢/ with rh, the physicalp meson mass in lattice unit. Here and in the following
X denotes a fit parameter. We introduce poles of the lowest-lying state foveotbr and axial-
vector channels with massew 4 and decay constanfy.a. We put the constraint§2 = 2 — f2
and farha = fyMy, among them so that they satisfy the first and second Weinberg sum [rdles [1
We also assume a linear dependencendn fy = x; 4+ x3 172 andmy = x + x4 . The function
X(6°) is either

m\ 1 2 A
In (ﬁ%) +§—H(4m%/q2)—|—x6Qf), 9)
or XeQ5In(Q3). (10)

Then, the function[{8) behaves@sq—°,q=°Ing?) at largeg? in the chiral limit, which is consistent
with the asymptotic scaling predicted by the operator product expansids){D§. Taking () for
X(6), n@llﬂ‘(qZ) reduces to the ChPT predictidfif (5) wh@p < 1, while (1) gives a logarithmic
term in the IargeQ% region as expected by OPE.

We fit the data at® < 2.0 using the measured values 6f andi; as shown in Fig[]3. We
have only attempted an uncorrelated fit since the full covariance matrix is likellgtermined for
many data points and free parameters in this fit. Bgth (9) pfd (10) fit the diééanell and indeed
give a reasonablg?/dof, though the latter is slightly better. Integrating owéiri the chiral limit,
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Figure 3: The fit results with (9) (dashed curves) and (10) (solid csixv&he results in the chiral limit are
also shown. The statistical errors shown are smaller thasytmbol size.

we obtainm?. |2 0= 676(50) and 811(12) Medfor ({) and [IP), respectively. The difference
arises from the chiral extrapolation arougé=0.1-0.2, since[{9) contains the chiral logarithmic
term. Recalling that in the determinationldf, the ChPT formula fits the data only at the smallest
¢ and (Ip) fits the data better thafih (9), we take the central value from théHit@) and the
difference as a systematic error due to the chiral extrapolation.

Expandinngl'l\(,lz’,&it aroundc? = 0 in the chiral limit and comparing with{](5), we obtain
Lio(my)= —f2(2& — £2)/(8x2x3). The fit results for [[9) gives|,(m,) = —4.9x 10°3. The
difference from the central value is added to the systematic error frofmgher order effect, and
included in [) as already mentioned.

The remaining part of the integrai{ > 2.0) is estimated based on the OPE, which pre-

dicts I'I\(,le(qZ) ~ ag/(g?)? in the chiral limit for largeg? up to a logarithmic term. Assuming

n =0 = a6/ (6%)% at ¢?=2, the fit result with [(110) givess=—0.0035. In the estimate of the

V-A
final result, we use a phenomenological value in the rangeJ01,—0.01] Ge\# [fL9] to be con-
servative. An integral then gives?. |-, 0= 182(149) MeV,.

Summing up the two parts, we obtain
Mé. = 993(12) (", %) (149 MeV?, (11)

as the pion squared-mass splitting in the chiral limit. The first error is statistieakgbond and
third ones are due to the chiral extrapolation and the uncertairdy. iThe result is reasonably
consistent with the experimental value at the physical quark mass [126%]Ma addition to the
errors quantified above, other sources of systematic errors may stillrevida do not expect, how-
ever, substantial systematic errors other than those estimated abovehsimtegral is dominated
by thed® ~ 0 region where the integranﬁﬂ\(,llA/ f2 in the chiral limit is strongly constrained by
the first Weinberg sum rulgn{” Je_o/ f2=1.

In this work, we have demonstrated that Siparameter and the pNGB mass can be calculated
using the lattice QCD technique. Since these quantities are generated salaelyhtlgySB, the
exact chiral symmetry on the lattice plays an essential role to prohibit conttomsdrom the
explicit breaking. The method is general and the application to other vilcdograuge theories
with arbitrary number of colors and flavors is straightforward. Thus wiih itiethod the lattice
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technique is able to directly investigate physical quantities relevant for th fptrenomenology.
In addition to these quantities, we can also calcudgtand the strong coupling constant using the
data in the largeg? region. The results will be reported in a subsequent pgpgr [20].
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