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Some GRBs are characterized by emission episodes occbefoge the main event, called pre-
cursors. Their emission intensity is usually weaker thanGIRB and is often comparable to (or
slightly greater than) the background noise, making thetiection difficult. We developed a code
to automatically detect such precursors and applied it emapse of 28BwifiBAT GRBs.

The identification procedure of precursor candidates usestection algorithm based on the
wavelet transforms, and relies on an accurate study of thE Bs#ckground noise properties.
A rigorous statistical approach is used for detection tihokbsettings and detection significance
evaluation. We show the preliminary results of the analysis
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1. Introduction

A precursor is an emission event occuring before the GRB main promptiemisghose
origin is still under debate. Models explaining precursors are discus$éy [7], [8]. The search
and study of these events is important to constrain the physics and moaelgiars.

Precursors are expected to be weaker and softer than the main evémey saill likely be
misinterpreted as noise in a gamma-ray instrument suchvalfBAT. We developed a code to
automatically detect such weak events in noisy signals using wavelet tmassfo

2. Thewaveet transform

Wavelet transforms, like Fourier transforms, are mathematical operatioms &pplied on
functions to obtain a different representation of them, in which certain resi@re more easily
recognizable. The wavelet transform is performed computing the cdivolbetween the orginal
function and an appropriately scaled and translated localized functidad @nalyzing function
or mother wavelgt so the localization information in the original signal is preserved. The new
domain comprises not only the “scale factors” (as in the Fourier transfounlso the offsets
used to translate the mother wavelet, so the wavelet domain is always largethéhariginal
domairt. In our case the signal to be analyzed is a light cuB/®, a one-dimensional data series.
The corresponding wavelet transform will be a two-dimensional datessedicated a8V (a,b),
wherea identifies the scaling factor arithe translation offset. We will often refer to this domain
as the “time-scale plane”. The mother wavelet we chose is the so called “Atelat” (actually
the second derivative of a Gaussipheacuse it is particularly well suited in revealing Gaussian-
shaped peaks in noisy signal and it has already been used in sea8RBoprecursors in the
BATSE archive (see [4]).

Note that no information is lost when performing wavelet transforms as ihigyal possible
to perform the inverse transformation and reconstruct the originallsigna

2.1 Thewavelet transform of a Gaussian noise

It is possible to show (see [1], [5]) that the ratio of the wavelet powerestuared standard
deviation (or normalized wavelet power) of a Gaussian noise is, at esnhqf the time-scale
plane, a random variable distributed according tp2adistribution with one degree of freedom
(when the mother wavelet is the Mexican hat):

2
WEDE e
where the symbol means “is distributed as”. This let us conduct a significance test on the GRB
light curve with the null hypotesis that the corresponding normalized wiapelger value is only
caused by noise. If the normalized wavelet power is less x#éh— o), with a being a prescribed
significance level, we accept the null hypotesis that the signal is just, ratissrwise we reject the
null hypotesis and conclude that some real physical signal is prestm data.

(2.1)

Lif the original domain has more than one dimension it is also possible tadesnistations of the mother wavelet
(see [2]).

2This family of mother wavelets is usually indicated as derivative of Gan$Bi®G) with a parameter representing
the order of derivative.



G. Cusumano

3. The SwiffBAT data

The search for precursor activity was conducted on a set of 280 lighes (dates ranging
from 2004-12-17 to 2008-04-13) from tiSaifiBAT archive. All data were processed through the
standardSwiftBAT pipeline® for data reduction: production of quality maps, mask weighting and
light curve extraction. All light curves were produced with a 1 s time binning.

3.1 Thebackground noise

The part of the light curves before the trigger were used to study thell&Kground noise.
We found that it can be effectively modeled with a Gaussian noise. In pkatiove started by
producing histograms of the part of light curves lying between the begjrufidata and the trigger
(“time window”), and fit them with a Gaussian function. The error assodiafith each bin count
in the histogram is just the square root of counts (we assume a Poisstatiatic3. While the fit
was satisfying in many cases, we noticed that the trigger often occunexdtiaé count rate had
grown significantly over the noise level, and this could result in an overetitimef the standard
deviation in the fit. So we shortened the time window until all points were belowaifaalue
calculated so that the probability for a Gaussian variable to have valuategthan the cutoff
value is 005/Nyoint. Then we ran again the fit to obtain new estimates for the standard deviation:
Fig. 1 shows the light curve of GRB 050412 before the trigger (ocagiain = 0) and the noise

GRB 050412, light curve before trigger
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Figure 1: Noise levels in the light curve of GRB 050412. The verticaélindicates the end of the shortened
time window.

levels calculated using the entire time window and the shortened one. Figw2 #resulting
histograms in the two cases. Finally, in Fig. 3 (left) we report the distributicxﬁ_,gjthe reduced
chi-squared, obtained from the fit over all light curves. In more th&a 80cases we havgZ < 1,

so we conclude that th8wifiBAT background noise is a Gaussian noise. This is a necessary
condition to apply the significance test described in Sect. 2.1. Fig. 3 (rigbtyssthe distribution

Shitp://swift.gsfc.nasa.gov/docs/swift/analysis/threads/bat_threads.html
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GRB 0504 12histogram of entire time window GRB 0504 12histogram of shortened time window
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Figure 2: Histogram of light curve using the entire time window (ledt)d the shortened one (right).
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Figure 3: Histogram of)(,zed (left) and of standard deviatiomw( right) obtained by fitting the noise in light
curves against a Gaussian distribution.

of standard deviationd{). The best fit parameters for each light curve were stored on a databa
for use in subsequent analysis.

4. Monte Carlo simulations

We performed Monte Carlo simulations to test the validity of Eq. 2.1, in particulidueife
are some border effects, and if it applies to the entire time-scale plane. Watsich@x 10* light
curves of Gaussian noise with parameters similar to the ones obtained by figingdimal light
curves. For each simulated light curve we computed the normalized waegtet pnd compared
it to the expected(? distribution with one degree of freedom. Fig. 4 shows the distribution of
normalized wavelet power for a fixed point of the time-scale plane, whickebldollows the
expected distribution. The vertical line indicates the 1% confidence leweshbid; some points
fall beyond this line because of the very high number of trials. We alsopeed ay? test to check
if the distribution of normalized wavelet power follows the expected distribiaimhwe found that
this is not true in the entire time-scale plane. In Fig. 5 we show a contour ploedinie-scale
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Montecarlo simulation (x%, = 0.8)
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Figure 4: Distribution of normalized wavelet power for a fixed pointthé time-scale plane. The vertical
line indicates the 1% confidence level threshold.

plane and the corresponding redugedas a gray scale gradient) resulting from the comparison of
the simulated data with the expected distribution; the solid line identifies the regide imkich

szed < 1.6., while the dashed line identifies the region outside the cone of influencg ¢CMe
borders (see [3]). Our simulations show that Eq. 2.1 holds only insideetiierr identified by
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Figure 5: Contour plot of the time-scale plane and redugédas a gray scale gradient) resulting from the
comparison of simulated data with expected distribution.

the solid line. This is because at larger scales the wavelet extension lecomparable with the
length of time series itself, so in the evaluation of the wavelet transform thal$gn is seen as
an approximately constant term and the result is no longer a randomleardlzach scale we can
divide the time domain into two parts: inside and outside the COI (respectividideland inside
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the dashed line). We conclude that when dealing with finite length time seri¢s dagays the
case in any real experiment) Eqg. 2.1 holds only at those scales for wieigdathoutside the COI
is longer than the part inside COI.

Finally we performed a simulation about the sensitivity of our feature detest&ihod (Sect.
2.1), and compared it to a more classical statistically-based approachinitiated data comprise
25 sets of 18 time series with Gaussian noise and a Gaussian peak (the feature to bedjietecte
Each set has a different signal/noise ratio [S/N = MAX(peak)/noige(The statistical approach
is based on the presence of significant positive excess in the noissi@adstribution. The result
of our comparison is shown in Fig. 6. Our feature detection method re&6l08s of detection at a

Detection method comparison
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Figure 6: Comparison of our feature detection method with a stasilfidhased approach. Our method is
much more sensitive.

S/N = 1.6, while the statistically-based approach reaches the same level at &/Nherefore our
method is much more sensitive than a statistically-based method.

5. Theprecursor detection algorithm

Precursors are emission events separated from the main events. lHowevere precise
definition of precursor does not exist yet, and different authorsdifferent definitions (see for
example [4], [9]). According to our definition, a precursor is an eteat:

e occurs before the main prompt emission;

e has a maximum peak weaker than the main event peak;

¢ the time-integrated flux is less than the integrated flux of the main event;
e is separated from the main peak by at least 2 seconds of noise;

With the first condition we allow the candidate precursor to trigger the instrurfiée last condi-
tion is instrument based, as it comes from the fact that we chose a 1 s binnin@tichere could
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not assess whether a peak is “well separated” from the main event gplagation is less than two
seconds.

The precursor detection algorithm follows these steps:

¢ indentification of the part of light curve before the main prompt:
we search for the main event peak as the highest count rate in the entireetie®e Shen
we move back in time until we identify a 2s-long interval with all points being belowiae
threshold, calculated as the level at which a Gaussian noise with a givetasdadeviation
(see Sect. 3.1) has only 1% probability of being higher. The part of lightecfrom the
beginning to this interval is used for wavelet analysis;

o wavelet transform;

o test for significance of normalized wavelet power:
we apply the significance test described in Sect. 2.1 with a confidenceoie¥&b. This
means that if a significant peak is found, we have a probability of 1% thatdtiésto a
statistical fluctuation;

e candidate precursor confirmation:
in case a significative signal has been found, the criteria described allbbe checked for
validation. In case all tests are passed the precursor is confirmed;

e light curve reconstruction:
if the precursor is confirmed, we perform the wavelet transform on mitieedight curve,
apply the test again and identify the regions in the time-scale plane for whiskgtiécance
testis passed, then we extend this region to comprise its COI. Finally, weripetie inverse
tranform using only the wavelet coefficients inside the identified regiorswiy we obtain
a de-noised light curve which allows us to easily identify the temporal inteltwdthg which
precursor emission takes place.

5.1 An example

As an example we report the detailed analysis on GRB 050713A. The ligit before the
prompt shows only some isolated points exceeding thdirfit (see Fig. 7, upper-left), however
our algorithm found only one considerable region of the time-scale plamesahreshold (Fig.
7, upper-right). Wavelet coefficients below threshold can be disdaadd the transform can be
inverted to reconstruct a “de-noised” light curve (Fig. 7, bottom).

6. Results

Our detection algorithm found 113 candidate precursors (over a safhpBOAGRBS), out
of which only 31 satisfy the tests described in Sect. 5. Three more GREBR2106 061019,
071010B) did not pass the tests; since we think that they should be takeacassors we added
them manually. So a total of 34 precursors have been detected (12%)etédded all precursors
cited by [9] except 050401, 060729, 070411 since they do not satigfgrecursor definition. We
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GRB 050713A, light curve (timedel=1000 ms) GRB 050713A, wavelet power
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Figure 7: Upper-left: light curve of GRB 050713A. Upper-right: wagetransform of the light curve, the
white contour indicates the region of points above thrashiobwer: “de-noised” light curve.

excluded 060124 since only the data collected during the precursce pteg event mode, while
the remaninder of the light curve is in survey mode.
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