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The B-meson light-cone distribution amplitude (LCDA) is defined as the matrix element of a

quark-antiquark bilocal light-cone operator in the heavy-quark effective theory (HQET) and is

a building block of QCD factorization formula for exclusiveB-meson decays. When the corre-

sponding bilocal HQET operator has a light-like distancet between the quark and antiquark fields,

the scale∼ 1/t separates the UV and IR regions, which induce the cusp singularity in radiative

corrections and the mixing of multiparticle states in nonperturbative corrections, respectively. We

treat the bilocal HQET operator based on the operator product expansion (OPE), disentangling

the singularities from the IR and UV regions systematically. The matching at the next-to-leading

order αs is performed in theMS scheme with a complete set of local operators of dimension

d≤ 5, through a manifestly gauge-invariant calculation organizing all contributions in the coordi-

nate space. The result exhibits the Wilson coefficients with Sudakov-type double logarithms and

the higher-dimensional operators with additional gluons. This OPE yields theB-meson LCDA

for t less than∼ 1 GeV−1, in terms ofΛ̄ = mB−mb and the two additional HQET parameters as

matrix elements of dimension-5 operators. The impact of these novel HQET parameters on the

integral relevant to exclusiveB decays,λB, is also discussed.
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For the exclusiveB-meson decays, such asB→ ππ, ργ , . . ., systematic methods have been de-
veloped using QCD factorization based on the heavy-quark limit [1–3]. In the corresponding fac-
torization formula of the decay amplitude, essential roles are played by the light-cone distribution
amplitudes (LCDAs) for the participating mesons, which include nonperturbative long-distance
contributions. In particular, in addition to the LCDAs for the light mesonsπ,ρ, etc., produced in
the final state, the LCDÃφ+ for theB meson, defined as the vacuum-to-meson matrix element [4],

φ̃+(t,µ) =
1

iF (µ)
〈0|q̄(tn)Peig

∫ t
0 dλn·A(λn) /nγ5hv(0)|B̄(v)〉=

∫
dωe−iωtφ+(ω,µ) , (1)

also participates in processes where large momentum is transferred to the soft spectator quark via
hard gluon exchange [1–3]. Here, the bilocal operator is built of theb-quark and light-antiquark
fields,hv(0) andq̄(tn), linked by the Wilson line at a light-like separationtn, with nµ as the light-
like vector (n2 = 0, n · v = 1), andvµ representing the 4-velocity of theB meson; a difference
between (1) and the familiar pion-LCDA is thathv(0) is an effective field in the heavy-quark effec-
tive theory (HQET).µ denotes the scale where the operator is renormalized, andF(µ) is the decay
constant in HQET,F(µ) =−i〈0|q̄/nγ5hv|B̄(v)〉. The RHS in (1) defines the momentum representa-
tion, with ωv+ denoting the LC component of the momentum of the light antiquark.

The “IR structure” of (1), studied using constraints from the equations of motion (EOM) and
heavy-quark symmetry [5], as well as the “UV structure”, calculated in the 1-loop renormalization
of the bilocal operator in (1) [6], is notoriously peculiar compared with the pion LCDA. For a
full description of (1) which would involve a complicated mixture of the IR and UV structures,
we first calculate the radiative corrections, taking into account hard and soft/collinear loops. The
one-particle-irreducible 1-loop diagrams (1LDs) for the 2-point function〈q̄(tn) /nγ5hv(0)〉 of (1)
yield [7] (〈· · ·〉 ≡ 〈0| · · · |B̄(v)〉, the Wilson line is suppressed, andCF = (N2

c −1)/(2Nc))

1LDs=
αsCF

2π

∫ 1

0
dξ

[{
−

(
1

2ε2
UV

+
L

εUV
+L2 +

5π2

24

)
δ (1−ξ ) +

(
1

εUV
− 1

εIR

)(
ξ

1−ξ

)

+

−
(

1
2εIR

+L

)}
〈q̄(ξ tn) /nγ5hv(0)〉− t

(
1

εIR
+2L−1−ξ

)
〈q̄(ξ tn)v·←−D /nγ5hv(0)〉

]
+· · · , (2)

in D = 4−2ε dimensions and Feynman gauge, whereL ≡ ln [i(t− i0)µeγE ] with theMS scaleµ
and the Euler constantγE. The “vertex-type” correction that connects the light-like Wilson line
and q̄(tn) in (1) is associated with only the massless degrees of freedom and yields the scaleless
loop-integral that gives the term with the “canceling” UV and IR poles,1/εUV−1/εIR, and with the
“plus”-distribution(ξ/(1−ξ ))+ as the splitting function; this term is identical to the corresponding
correction for the case of the pion LCDA. The other terms in (2) have “non-canceling” UV and IR
poles: another vertex-type correction around a “cusp” between the two Wilson lines, the light-like
Wilson line of (1) and the time-like Wilson line fromhv(0) = Pexp[ig

∫ 0
−∞ dλv ·A(λv)]hv(−∞v),

gives the terms proportional toδ (1− ξ ), which contain the double as well as single UV pole,
corresponding to the cusp singularity [6]. The “ladder-type” correction, connecting the two quark
fields in (1), gives all the remaining terms in (2), which contain the IR poles and are associated
with not only the bilocal operator in (1), but also the higher dimensional operators; the ellipses in
(2) are expressed by the operators involving two or more additional covariant derivatives.

The renormalized LCDA is obtained by subtracting the UV poles from (2) with the trivial
quark self-energy corrections complemented. Here, the term with the plus-distribution(ξ/(1−
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ξ ))+ is analytic (Taylor expandable) att = 0, similar to the pion LCDA, but the other terms are not
analytic due to the presence of logarithmsL, L2 [6, 8]. In particular, the nontrivial dependence of
the latter terms ontµ throughL implies that the scale∼ 1/t separates the UV and IR regions. Thus,
we have to use the operator product expansion (OPE) to treat the different UV and IR behaviors
simultaneously: the coefficient functions absorb all the singular logarithms, while, for the local
operators to absorb the IR poles, we have to take into account many higher dimensional operators.
Such OPE with local operators is useful when the separationt is less than the typical distance scale
of quantum fluctuation, i.e., whent . 1/µ. We note that an OPE for theB-meson LCDA (1) was
discussed in [9], taking into account the local operators of dimensiond≤ 4 and the NLO (O(αs))
corrections to the corresponding Wilson coefficients in a “cutoff scheme”, where an additional
momentum cutoffΛUV (À ΛQCD) was introduced, and the OPE, in powers of1/ΛUV , was derived
for the regularized moments,M j =

∫ ΛUV
0 dωω jφ+(ω,µ), in particular, for the first two moments

with j = 0,1; note,M j → ∞ asΛUV → ∞ [4]. Here, we derive the OPE for (1), taking into account
the local operators of dimensiond ≤ 5 and calculating the corresponding Wilson coefficients at
NLO accuracy. Following the discussion above, we carry out the calculation fort . 1/µ in the
coordinate space and in theMS scheme, so that there is no need to introduce any additional cutoff.

The most complicated task is the reorganization of contributions from (many) Feynman dia-
grams in terms of the matrix element of gauge-invariant operators including higher dimensional
operators, in particular, the three-body operators of dimension 5, such asq̄Gαβ /nγ5hv with the field
strength tensorGαβ [4, 5]. To derive the NLO Wilson coefficients associated with such operators,
we have to compute the 1-loop diagrams for the 3-point function, as well as those for the 2-point
function as in (2), where the former diagrams are obtained by attaching the external gluon line to
the latter diagrams in all possible ways. We employ the background field method [10], where the
background fields represent the nonperturbative long-distance degrees of freedom and satisfy the
exact classical EOM. We use the Fock-Schwinger gauge,xµA(c)

µ (x) = 0, for the background gluon

field A(c)
µ . This gauge condition is solved to giveA(c)

µ (x) =
∫ 1

0 duuxβ G(c)
β µ(ux) [10], which allows us

to reexpress each Feynman diagram in terms of the matrix element of the operators associated with
the field strength tensor. Also, this ensures that the Wilson line in (1), as well as the heavy-quark
propagator, does not couple directly to the background gluons while a massless quark or gluon
propagator couples to them. With the matching in theMS scheme, we obtain [7] the OPE,

q̄(tn)Peig
∫ t

0 dλn·A(λn) /nγ5hv(0) = C(3)
1 (t,µ)O(3)

1 (µ)+
2

∑
k=1

C(4)
k (t,µ)O(4)

k (µ)+
7

∑
k=1

C(5)
k (t,µ)O(5)

k (µ) ,

(3)
where the summation is over a basis of local operators of dimension-d, O

(d)
k (k = 1,2, . . .), defined

as O
(3)
1 ≡ q̄n/γ5hv, {O(4)

k } ≡ {q̄(in ·←−D )n/γ5hv, q̄(iv ·←−D )n/γ5hv}, and{O(5)
k } ≡ {q̄(in ·←−D )2n/γ5hv,

q̄(iv ·←−D )(in ·←−D )n/γ5hv, q̄(iv ·←−D )2n/γ5hv, q̄igGαβ vαnβ n/γ5hv, q̄igGαβ γαnβ n̄/γ5hv, q̄igGαβ γαvβ n̄/γ5hv,
q̄gGαβ σαβ n/γ5hv}, with another light-like vector,̄n2 = 0, asvµ = (nµ + n̄µ)/2. The NLO Wilson
coefficients are obtained as

C(3)
1 (t,µ) = 1− αsCF

4π

(
2L2 +2L+

5π2

12

)
, C(4)

1 (t,µ) =−it

[
1− αsCF

4π

(
2L2 +L+

5π2

12

)]
,

C(4)
2 (t,µ) =

itαsCF

4π
(4L−3) , C(5)

1 (t,µ) =− t2

2

[
1− αsCF

4π

(
2L2 +

2
3

L+
5π2

12

)]
, (4)
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and, for the explicit form ofC(5)
2 (t,µ),C(5)

3 (t,µ), . . . ,C(5)
7 (t,µ), we refer the readers to [7]. Here

and below,µ is theMS scale, andαs≡ αs(µ). The double logarithmL2 in the coefficient functions
originates from the cusp singularity (see (2)). The 1-loop corrections for the 2-point function induce
all of the above ten operators using the EOM, while those for the 3-point function induce only
O

(5)
4,5,6,7 associated with the field-strength tensor; as a result, the coefficientsC(5)

4,5,6,7(t,µ) involve
the terms proportional to the color factorCG = Nc as well as toCF [7].

Taking the matrix element〈· · ·〉 ≡ 〈0| · · · |B̄(v)〉 of (3), we can derive the OPE form of the
B-meson LCDA (1). The matrix elements of the local operators in (3) are known to be related
to a few nonperturbative parameters in the HQET, using the EOM and heavy-quark symmetry as
demonstrated in [4, 5]: 〈O(4)

1 〉 = 4iF (µ)Λ̄/3, 〈O(4)
2 〉 = iF (µ)Λ̄, with F of (1) andΛ̄ = mB−mb,

representing the mass difference between theB-meson andb-quark, and all seven matrix elements
〈O(5)

k 〉 for the dimension-5 operators can be expressed byF , Λ̄ and two additional HQET param-
etersλE andλH , which are associated with the chromoelectric and chromomagnetic fields inside
theB meson as〈q̄gEEE ·αααγ5hv〉= F(µ)λ 2

E(µ) and〈q̄gHHH ·σσσγ5hv〉= iF (µ)λ 2
H(µ), respectively, in the

rest frame wherev = (1,0). As a result, we obtain [7] the OPE form for the LCDA (1),

φ̃+(t,µ) = 1− αsCF

4π

(
2L2 +2L+

5π2

12

)
− it

4Λ̄
3

[
1− αsCF

4π

(
2L2 +4L− 9

4
+

5π2

12

)]

−t2Λ̄2
[
1−αsCF

4π

(
2L2 +

16
3

L− 35
9

+
5π2

12

)]
− t2λ 2

E(µ)
3

[
1−αsCF

4π

(
2L2 +2L− 2

3
+

5π2

12

)

+
αsCG

4π

(
3
4

L− 1
2

)]
− t2λ 2

H(µ)
6

[
1− αsCF

4π

(
2L2 +

2
3

+
5π2

12

)
− αsCG

8π
(L−1)

]
, (5)

which takes into account the Wilson coefficients toO(αs) and a complete set of the local operators
of dimensiond≤ 5. Fourier transforming to the momentum representation and taking the first two
( j = 0,1) regularized-moments,M j =

∫ ΛUV
0 dωω jφ+(ω,µ), the contributions from the first line in

(5), associated with matrix elements of the dimension-3 and -4 operators, coincide completely with
the result obtained in [9]. The second and third lines in (5) are generated from the dimension-5
operators. Our OPE result (5) “merges” the UV [6] and IR structures [5] peculiar to theB-meson
LCDA, so that it embodies novel behaviors that are completely different from those of the pion
LCDA: µ andt are strongly correlated due to the logarithmic contributions,L = ln [i(t− i0)µeγE ],
from radiative corrections, so that the DA is not Taylor expandable aboutt = 0, which in turn
implies the UV divergence in the moments [4, 8, 9], M j → ∞ as ΛUV → ∞. The DA receives
the contributions from (many) higher dimensional operators, in particular, from those associated
with the long-distance gluon fields inside theB-meson. It is instructive to draw a comparison
with the previous results, concerning UV or IR structure: one can prove [7] that (5) satisfies the
renormalization group equation for (1), which is governed by the evolution kernel [6] determined by
the (single) UV poles in (2). On the other hand, (5) reveals that the solution of the EOM constraints
for (1), which was obtained in [5], is subject to additional effects from radiative corrections, see
[7] for the detail (see also [8]). Such corrections to the EOM constraints at orderαs in perturbation
theory is peculiar to the heavy-meson LCDAs in the HQET and does not arise for the case of the
(higher twist) LCDAs for the light mesons,π,ρ, etc. [11].

Our OPE form (5) allows us to parameterize all nonperturbative contributions in theB-meson
LCDA (1) by three HQET parameters,̄Λ, λE andλH , and gives a model-independent description

4
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Figure 1: TheB-meson LCDA atµ = 1 GeV using the OPE (left) and its continuation with a model (right).

of theB-meson LCDA whent . 1/µ (≤ 1/ΛQCD), taking into account the UV and IR structures si-
multaneously. Here, we evaluate (5) at the scaleµ = 1 GeV:Λ̄ = mB−mb in (5) is defined by theb-
quark pole massmb. Following [9], we eliminateΛ̄ in favor of a short-distance parameter,Λ̄DA, free
from IR renormalon ambiguities and written asΛ̄ = Λ̄DA(µ) [1+(7/16π)CFαs]−(9/8π)µCFαs, to
one-loop accuracy;̄ΛDA(µ) can be related to another short-distance mass parameter whose value
is extracted from analysis of the spectra in inclusive decaysB→ Xsγ andB→ Xul ν, leading to
Λ̄DA(µ = 1 GeV) ' 0.52 GeV [9]. For the novel parameters associated with the dimension-5 op-
erators, we use the central values ofλ 2

E(µ) = 0.11±0.06 GeV2, λ 2
H(µ) = 0.18±0.07 GeV2, at

µ = 1 GeV, which were obtained by QCD sum rules [4]; no other estimate exists forλE or λH . We
calculate (5) for imaginary LC separation, performing the Wick rotationt →−iτ [4, 8].

The results forφ̃+(−iτ,µ = 1 GeV) using (5) are shown as a function ofτ in the LHS of
Fig. 1 [7]: the wide-solid curve shows the whole contributions of (5), while the narrow-solid curve
shows the result forαs→ 0; the NLO perturbative corrections are at the 10-30% level for moderate
τ of order 1 GeV−1 ∼ 1/µ, while they are very large forτ → 0 because of singular logarithms
L2 andL. The dashed and dot-dashed curves show the contributions of the first two terms and the
first line in (5), respectively, associated with the operators of dimensiond = 3 andd≤ 4, while the
dotted curve gives the results of (5) whenλE = λH = 0. For moderateτ, the contributions from
the dimension-4 operators suppress the DA by 30-40%, but the dimension-5 operators, in contrast,
lead to enhancement by 10-20% with significant effects fromλE andλH . OurB-meson LCDA (5)
indeed works up to moderate LC distancesτ, where the hierarchy among the dashed, dot-dashed,
and wide-solid curves demonstrates convergence of the OPE (3).

The two-dot-dashed curve in the LHS of Fig. 1 shows the behavior of the two-component
ansatz by Lee and Neubert [9], which is given in momentum space as

φLN
+ (ω,µ) = N

ω
ω2

0

e−ω/ω0 +θ(ω−ωt)
CFαs

πω

[(
1
2
− ln

ω
µ

)
+

4Λ̄DA

3ω

(
2− ln

ω
µ

)]
, (6)

where the second term reproduces the correct asymptotic behavior of the DA (1) for ω ÀΛQCD and
the first term represents the nonperturbative component modeled by an exponential form [4], with
ωt = 2.33GeV,N = 0.963, andω0 = 0.438GeV atµ = 1GeV; these parameters are fixed by match-
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λ 2
E = 0.11 GeV2, λ 2

H = 0.18 GeV2 λ 2
E = λ 2

H = 0

τc [GeV−1] N ω0 [GeV] λ−1
B [GeV−1] N ω0 [GeV] λ−1

B [GeV−1]

0.4 0.816 0.257 3.11 (0.23+2.88) 0.832 0.301 2.69 (0.23+2.46)
0.6 0.850 0.306 2.70 (0.35+2.35) 0.899 0.394 2.19 (0.35+1.84)
0.8 0.852 0.308 2.69 (0.47+2.22) 0.966 0.461 1.99 (0.46+1.53)
1.0 0.858 0.313 2.66 (0.58+2.08) 1.11 0.572 1.79 (0.56+1.23)
1.2 0.910 0.349 2.51 (0.67+1.84) 1.55 0.839 1.56 (0.64+0.92)
1.4 1.09 0.456 2.22 (0.76+1.46) 4.43 1.95 1.32 (0.71+0.61)
1.6 1.81 0.777 1.87 (0.83+1.04) 9.82 −4.55 1.11 (0.77+0.34)

Table 1: Parameters of the model functionN/(τω0 +1)2 for τ ≥ τc with different values ofτc, and the
results of the inverse momentλ−1

B (µ) at µ = 1 GeV, with the first and second numbers in the parentheses
denoting the contributions from the first and the second terms in the RHS of (7).

ing the first two (j = 0,1) cut-moments
∫ ΛUV

0 dωω jφLN
+ (ω,µ) with the OPE for the corresponding

cut-momentsM0,1 derived in [9], where the operators of dimensiond ≤ 4 and the corresponding
Wilson coefficients at NLO are taken into account. Forτ . 1 GeV−1, the Lee-Neubert ansatz (6)
shows behavior similar to (5) with λE = λH = 0 substituted; note that the first term of (6) produces
particular contributions associated with the operators of dimension-5 and higher.

For τ À 1 GeV−1, the contributions associated with higher-dimensional operators become
important, and the OPE diverges (see (5) and Fig. 1); thus, one has to rely on a certain model
for the largeτ behavior and connect the model-independent descriptions at small and moder-
ateτ to that model. The results in Fig. 1 suggest the possibility of connecting the behavior for
τ ≤ τc (τc ∼ 1 GeV−1) given by our OPE form (5) to that forτ ≥ τc, given by the coordinate-
space representation of the first term of (6),

∫ ∞
0 dωe−ωτ (

Nω/ω2
0

)
e−ω/ω0 = N/(τω0 +1)2. Here,

N andω0 can be determined such that both the resulting total DAφ̃+(−iτ,µ) and its derivative
∂ φ̃+(−iτ ,µ)/∂τ are continuous atτ = τc. In the LHS of Table 1, we show [7] the values ofN
andω0 obtained by solving the corresponding conditions of the continuity forµ = 1 GeV. (The
RHS of Table 1 shows the results that would be obtained by solving the similar continuity con-
ditions with λE = λH = 0.) In the RHS of Fig. 1, the wide-solid and two-dot-dashed curves are
same as those in the LHS, and the dotted, solid-gray, and dashed curves show the behavior of the
above model functionN/(τω0 +1)2 for τ ≥ τc with τc = 0.6, 1.0, and1.4 GeV−1, respectively,
using the corresponding values ofN andω0 in the LHS of Table 1; these three curves behave as
∼N/(ω2

0τ2) at largeτ , with largerN/ω2
0 than those of (6) and the RHS of Table 1. Indeed, we can

show thatN/ω2
0 = (9/4Λ̄2

DA)
{

1+ τcΛ̄DA
[
λ 2

E/Λ̄2
DA +λ 2

H/(2Λ̄2
DA)−1

]}
+ · · ·, using the continuity

of φ̃+(−iτ,µ), ∂ φ̃+(−iτ,µ)/∂τ atτ = τc, and thus the contributions ofλE andλH enhanceN/ω2
0 .

Using these results, we calculate the first inverse moment of the LCDA,

λ−1
B (µ) =

∫ ∞

0
dω

φ+(ω,µ)
ω

=
∫ τc

0
dτφ̃+(−iτ,µ)+

∫ ∞

τc

dτφ̃+(−iτ,µ) , (7)

which is of particular interest for the QCD description of exclusiveB-meson decays. We substi-
tute (5) and the model function,N/(τω0 +1)2, into the first and the second terms in the RHS,
respectively, and the results are shown in Table 1 for each value ofτc [7]. The “stable” behav-
ior observed for0.6 GeV−1 . τc . 1 GeV−1 in the LHS of Table 1 and in the RHS of Fig. 1
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suggests thatλ−1
B (µ = 1 GeV) ' 2.7 GeV−1, i.e., λB(µ = 1 GeV) ' 0.37 GeV. This value ofλB

is somewhat smaller than the previous estimates that include nonperturbative and/or perturbative
QCD corrections [8, 9, 12] (e.g., (6) givesλB(µ = 1 GeV) ' 0.48 GeV). A value ofλB that is as
small as our value was adopted in [1]. Note that in the RHS of Table 1 withλE,H = 0, the stable
behavior is not seen as clearly as in the LHS, andλB assumes larger values than in the latter. These
results demonstrate that the novel HQET parameters,λE andλH , associated with the dimension-5
quark-antiquark-gluon operators, could lead to smaller value ofλB. In particular, using the values
λ 2

E = 0.17 GeV2, λ 2
H = 0.25 GeV2, which correspond to their upper bound from the QCD sum rule

estimate atµ = 1 GeV [4], we find that the wide-solid curve in Fig. 1 becomes further enhanced in
the moderateτ region, so that (7) givesλB(µ = 1 GeV)∼ 0.2 GeV or smaller.

To summarize, we have derived the OPE that embodies both the notorious UV and IR be-
haviors of theB-meson LCDA, including all contributions from the local operators of dimension
d≤ 5 and the corresponding Wilson coefficients at NLO accuracy. This OPE provides us with the
most accurate description of theB-meson LCDA for distances less than∼ 1/ΛQCD. We have also
used the model-independent behaviors from our OPE to constrain the long-distance behavior of
the LCDA and estimate the first inverse momentλ−1

B . The results demonstrated the impact of the
novel HQET parameters, associated with the dimension-5 quark-antiquark-gluon operators.
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