PROCEEDINGS

OF SCIENCE

Using SCET to calculate electroweak corrections in
gauge boson production

Jui-yu Chiu
Department of Physics, University of California at San @ieba Jolla, CA 92093
E-mail: j chi u@hysi cs. ucsd. edu

Andreas Fuhrer *
Department of Physics, University of California at San Righa Jolla, CA 92093
E-mail: af uhr er @hysi cs. ucsd. edu

André H. Hoang

Max-Planck-Institut fur Physik (Werner-Heisenberg-ing}, Fohringer Ring 6,
80805 Miinchen, Germany

E-mail: ahoang@rppru. npg. de

Randall Kelley
Department of Physics, University of California at San Righa Jolla, CA 92093
E-mail: r kel | ey@hysi cs. ucsd. edu

Aneesh V. Manohar
Department of Physics, University of California at San Righa Jolla, CA 92093

E-mail: amanohar @icsd. edu

We extend an effective theory framework developped in R@fs2] to sum electroweak Su-
dakov logarithms in high energy processes to also includsivagauge bosons in the final state.
The calculations require an additional regulator on topiwfathsional regularization to tame the
collinear singularities. We propose to use theegulator, which respects soft-collinear factoriza-
tion.

International Workshop on Effective Field Theories: frdme pion to the upsilon
February 2-6 2009
Valencia, Spain

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Using SCET to calculate electroweak corrections in gaugmhgroduction Andreas Fuhrer

1. Introduction

The Large Hadron Collider (LHC) has a center-of-mass enefgys = 14 TeV, and will be
able to measure collisions with a partonic center-of-massgy of several TeV, more than an or-
der of magnitude larger than the masses of the electroweaaegaosons. Radiative corrections
to scattering processes depend on the ratio of mass scatesdiative corrections at high energy
depend on logarithms of the form Ieg\/l\?\,z. In high energy exclusive processes, radiative correc-
tions are enhanced by two powers of a large logarithm for eadér in perturbation theory, and
the logarithms are often referred to as Sudakov (doublegrittgns. Electroweak Sudakov cor-
rections are not small at LHC energies, sinclg?s/M3,,/(41tsir? 8y) ~ 0.15 at./s= 4 TeV.
These Sudakov corrections lead to sizeable effects and megbummed to all orders.

The Sudakov logarithm Iqg/ M\?\,‘Z) can be thought of as an infrared logarithm in the elec-
troweak theory, since it diverges sz — 0. By using an effective field theory (EFT), these
infrared logarithms in the original theory can be convettedltraviolet logarithms in the effective
theory, and summed using standard renormalization graqmigues. The effective theory needed
is soft-collinear effective theory (SCET) [3, 4], which Haeen used to study high energy processes
in QCD, and to perform Sudakov resummations arising frormatag gluon corrections.

The summation of electroweak Sudakov logarithms usingtfie field theory methods has
extensively been discussed in Ref. [1] for the Sudakov faxatdr and in Ref. [2] for four fermi
scattering processes. Here, we extend the discussion ¢egs®s with gauge bosons in the final
state. Only the Sudakov form factor will be considered infillewing.

2. Exponentiation

We start by summarizing some known properties of the Sudftkov-factor [5] for the vector
current. The Euclidean form-factée (Q?) has the expansion. (= log(Q?/M?))

FE=1+a (k12|_2 + k1L + k]_o) + a? (k24|_4 + k23|_3 + k22|_2 + koL + kzo) +..., (2.1)

with the a™ term having powers of up toL?". In the literature, the highest power bfis called

the LLr term, the next power is called the NElterm, etc. We have included the subscp(for

the form-factor) to distinguish it from the renormalizatigroup counting described below.
The series for lo§e (Q?) takes a simpler form

|Og FE =a (R12L2 + RllL + r(lo) + 02 (R23L3 + r(22|_2 + R21L + r(zo) +..., (2.2)

with the a™ term having powers of up toL"*1, and the expansion begins at ora@er Note that
Eq. (2.2) implies non-trivial relations among the coefintgk,n in Eq. (2.1). At ordemn, there are
2n+ 1 coefficientd,m, 0 < m< 2nin Eq. (2.1), but onlyn+2 coeﬁicientsl?nm, 0<m<n+1in
Eq. (2.2).

The right-hand-side of Eq. (2.2) can be written in terms eflth seriesL fo(al) = kyporL2 +
koza2L3+ ..., the NLL seriesf;(arL) = kyaL +kooa?L2+ ..., the NNLL seriesx fo(arL) = kyor +
ko102L + ... etc. as

logFe = Lfo(aL)+ fi(aLl)+afa(al)+.... (2.3)
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fo and f; begin at orderr, and the remainind, begin at order one.

Here, LL, NLL, etc. (with no subscripts) will refer to the aating for logFg. This is also
the counting appropriate for a renormalization group immptbcomputation, and is different from
the conventional counting discussed above. If one lookkeabtdera? terms, for example, the
conventional counting is that tHe* term is LLg, the L3 term is NLLg, the L? term is N'LLg,
the L term is NPLLf, and thel® term is N'LLF. Using our counting, the terms are given by
exponentiating lo§e to LL, NLL, N2LL, N°LL, and NBLL, respectively. At higher orders, the
mismatch in powers of N between the two counting methodeases.

Since for electroweak corrections at the TeV saalé is quite sizeable, the LL series might
be summed up to all orders.

3. SCET formalism

The theory we consider is 8U(2) spontaneously broken gauge theory, with a Higgs in the
fundamental representation, where all gauge bosons hammmaon massM. It is convenient to
write the group theory factors usi@, Ca, Tet

The physical quantity of interest is the Sudakov form fa&g(Q?) in the Euclidean region,

Fo(Q%) = 4 (p2|Olp1), (3.1)

whereQ? = —(p2 — p1)?2 > M?, O'is a generic operator and” a normalization factor. In SCET,
Fo(Q?) is computed in three steps: (i) matching from the full gauggoty to SCET au = Q
(high-scale matching) (ii) running in SCET betwe®mndM and (iii) integrating out the gauge
bosons ati = M (low-scale matching). All computations are done to leadirdgr in SCET power
counting, i.e. neglectinlyl”/Q? power corrections.

The SCET fields and Lagrangian depend on two null four-veatoand n, with n = (1,n)
andn= (1,—n), wheren is a unit vector, so that-n= 2. In the Sudakov problem, one works in
the Breit frame, witm chosen to be along the, direction, so thah is along thep; direction. In
the Breit frame, the momentum transfghas no time component® = 0, so that the particle is
back-scattered. The light-cone components of a four-veztwe defined by™ =n-p, p~ =n-p,
andp,, which is orthogonal te andn, so that

1 _ 1
P = SR p)+ 5 (n-p) + pt. 3.2)

In our problem,p; = p1; = p; = p2. = 0, andQ? = p; p, . A gauge boson moving in a direction
close ton is described by the-collinear SCET fieldA, p(x), wherep is a label momentum, and
has components- pandp, [3, 4]. It describes particles (on- or off-shell) with engi2E ~ n- p,
andp? < Q2. The total momentum of the fielk, ,(x) is p+ k, wherek is the residual momentum
of order QA2 contained in the Fourier transform gf The scaling of the momenta is p ~ Q,
n-p~ QA2 p, ~QA. Then-collinear fieldArp(x) contains massive gauge bosons moving near
then-direction, with momentum scaling p~ Q, - p~ QA?, p;, ~ QA. Here we havé ~ M/Q,
whereA <« 1 is the power counting parameter used for the EFT expan3iba.mass-mode field
(see Ref. [6]) contains massive gauge bosons with all mamenbmponents scaling § ~ M.

INote that the results only hold f@ = 2, since for arSU(N) group withN > 2, a fundamental Higgs does not
break the gauge symmetry completely.



Using SCET to calculate electroweak corrections in gaugmhgroduction Andreas Fuhrer

4. Wilson lines and regulator

Before we outline how to extend the framework of Refs. [1024fs0 include final state gauge
bosons, we elaborate on a technical issue encountered vallariating SCET diagrams with a
massive gauge boson.

Consider a high energy scattering process with two or morgcfess, in then; direction,i =
1,....r. ni-collinear gauge bosons, which have momentum parallel tticpgi can interact with
particlei, or with the other particle§ # i. The coupling oh;-collinear gauge bosons to particles
included explicitly in the SCET Lagrangian. The particlage interactions are identical to those
in the full theory, and there is no simplification on making thansition to SCET. However, if an
n;-collinear gauge boson interacts with a partigleot in then;-direction, then particlg becomes
off-shell by an amount of orde€p, and the intermediate particjgropagators can be integrated out,
giving a Wilson line interaction in SCET. The form of theseggitors was derived in Ref. [4, 7], and
gives the Wilson line interactiow &, whereW, is a Wilson line in then direction in the same
representation a&,. This is easy to see in processes with only two collineaiqast But even in
complicated scattering processes with more than two ealliparticles the Wilson line interaction
still has the foranTEni. To see that this statement also holds at one loop is nogktfaiward. The
reason is that loop diagrams require an additional regutaidop of dimensional regularization.
This introduces a dependence on all the other collineactitiresn;. Here, we use tha regulator
introduced in Ref. [8], which amounts to modify the propagatenominators as

1 1
— .
(Prk2=nf " (pr K2,
In SCET, the collinear propagator denominators have thiacement of Eq. (4.1). Accordingly,
Wilson lines become

(4.1)

en £-N
k-nj ~ k-n—0jn’
ZA.
Oin = ———————. (4.2)
P (nen) (g - py)

It turns out (see Ref. [8]) that after zero-bin subtracti®h(fee also Ref. [10]), the dependence on
the other collinear directions drop out anecollinear gauge boson emission can be combined into
a single Wilson line. Note that in an intermediate step, ls#gu dependent regions are introduced
into the calculation. However, they cancel between the softl collinear diagrams. The sum of
all diagrams is of course independent of theegulator.

5. Transversely polarized W bosons

Consider scattering of two gauge bosons via the ope@fos FJ, FH" 2 with F, = 0,A] —
9y A8 + g faP°AD AS the non-abelian field strength tensor,

(P2 O7|p1) = 4Fo, (Q°) [pr- P2€(p1) - €7(P2) — €°(P2) - PrE(P1) - Pl (5.1)

Following the steps outlined in Sect. 3, one first matcheduthéheory matrix element at the high
scaleu ~ Q onto the matrix element in the effective theory. The coroesiing operator t@+r in
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Figure 1: One loop diagrams in the effective theory. The wiggly lin@akes a mass mode gauge boson
and a wiggly line with an overlaid straight line indicatesdlioear field. Wave function diagrams are not
shown.

the effective theory readr = Bl B+, , with B, defined as [11, 12]

nvpl’
1. . . .
BH, = ; [WIDAW,] iDY =id" — oAl ,. (5.2)

The matching coefficier@r (1) of the effective theory operator up (o) reads

7-[2
Cr() =202 |1+ (—LQ2+€>] , (5.3)

where we use the notatidrx = In (Xz/uz). This is just the finite part of the one loop amplitude in
the full theory, normalized according to Eqg. (5.1). Notetthiace we are in the high energy limit,
the SU(2) gauge theory is in the unbroken phase and all the masses bawesbt to zero. The
effective theory one loop diagrams shown in Fig. 1 are alletess in dimensional regularization
and vanish. The anomalous dimension of the effective thepeyatorOr follows from the% poles
from the one loop matrix element,

o a 10 4 2 1
= —Calllq—4+—|—-=Ca+=T T ~|. 4
1% 47_[CA[ Q ]—1-27_[[ 3CA—i-3 an+3 Fns+3:| (5.4)
The second term in the square brackets is the contribut@n the wave function renormalization
of the gauge bosons. The matching coefficieénfu) can be evolved down to a scgle~ M with
the renormalization group equation

Mz du
Crlp) =Cr(uexp| [ Lyr(u| 55)
o M
At the low scaleu ~ M, the gauge bosons are integrated out by matching the efetieory
with dynamical massive gauge bosons onto an effective yhebere the gauge bosons are treated
as heavy background fields. The matching coefficient at testmale,Dt(u), up to orderd(a)
is again obtained by comparing the finite parts of the one lnafrix elements. Since the gauge
boson has to be treated as massive, the one loop diagrams danimh anymore. The calculation
of the individual diagrams shown in Fig. 1 requires an adddal regulator, as described in Sect. 4.
In the effective theory below the scdlé, there are no dynamical interacting degrees of freedom
left and therefore, no quantum corrections appear. Alsretis no need to evolvBr (). One
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obtains

a 5112
DT(U) =1+ ETCA [ZLMLQ—LMZ—ZLM—|—2—?+2f5(1,1):| + ORy,

1—X+wx—vxX(1—X)
1-x

1 _
f(vw) = /0 dxzxxln (5.6)

The quantitydR, denotes the finite part of the residue of the full propagatdhe field x. The
result for the resummed Sudakov form factor at high energiads

For (Q?) = Cr (Q)exp [ A g %“w(u)} Dr(M). (5.7)

Note that it was proven in Ref. [1] that there can appear at mos logarithm of the high scale,
Lq, in the low scale matching coefficiebt .

6. Longitudinally polarized W bosons

The emission of longitudinally polarized gauge bosonsgtt ehergies is related to a truncated
matrix element (indicated by the subscript 'tr’) of unploai Goldstone bosons by virtue of the
Goldstone boson equivalence theorem (see Ref. [13]),

. M
e (pr)e”" (p2)Ru(OITALAL|0),, = %6 °Ry(OT ¢*¢°|0),, + & (E) : (6.1)

The quantity#’ is a nontrivial correction factor arising from the truncatiof the Greens functions,

Z 47 73 22 -72+5 224+ 78 V2—
é@:l%—i ——+—n——+ * In(z)+ t +Zarctan<7z> (6.2)
4| 4 123 12 8 4/4— 2 V2+z

with z= Mp/M the Higgs-Goldstone boson mass ratio. Note #iadoes not run, however, it
compensates the gauge dependence of the unphysical Gadsisons.

The effective theory calculation proceeds in the same mraasalescribed in the previous
section. The full theory operator is the square of the Hignstet operator

OL=H'H, H = \ifz (fjﬁ) . 6.3)

Since the Higgs doublet field in the effective theory is a acabllinear fieldg, p in the same
representation abl, the high scale matching coefficie6f (i) of the operator in the effective
theory, O, = [(g{pzwn] [Wn:%mpl], and its anomalous dimensign have already been calculated in
Ref. [1]. The result is

=112 [ Lo?rag 2+ 7" — Yeralg-8.  (6.4)

L(M) = a-F Q Q 6| W=gFloka : .

At the low scale, theSU(2) invariant operator splits up into invariants of the remainSQ(3)
custodial symmetry. Again, in the theory belgw~ M, the Higgs and the Goldstone boson are
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treated as heavy field1s§h> andh\(,“’) and the theory has no quantum corrections. Matching onto the
operatorOn, = hiP'hi andOy,, = hih{?), one finds

a 5 4 2
DI(_QDQD)(M) — 1+ETCF |:2LM|—Q_LMZ_ZLM+2_T+§fs(l’l)+§fs(l7zz):| +5Rq)7
a 577
D™ () = 144 -C {2LMLQ —Lw® — 2Ly +2— 5~ +2fs(2271)] +ORy. (6.5)

Having resummed the large logarithms in the Goldstone bssattering off the operatdd, , one
only needs to correct with the factétof Eq. (6.2) to obtain the result for the scattering of longit
dinally polarized gauge bosons.

7. Summary and conclusions

We discuss a new regulator to tame the collinear singudatriti the effective theory with mas-
sive gauge bosons. This regulator respects soft-colliiaetorization. Furthermore, the framework
of Refs. [1, 2] is extended to also include gauge bosons ifitiad state. We restrict the discus-
sion to a spontaneously brok&U(2) gauge symmetry. Results for scattering of gauge bosons
off an external operator are presented. We consider magaige bosons with transverse as well
as longitudinal polarization. The latter relies on the Guidie boson equivalence theorem. A
generalization to the full standard model gauge group &ggitforward.
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