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We study various aspects of the renormalization of the Resonance Chiral Theory at the one-loop

level using a spin-one resonance propagator as a concrete example. We calculate explicitly the

one-loop self-energy within the antisymmetric tensor fieldformalism, briefly discuss the general

structure of the corresponding propagator obtained by means of the Dyson re-summation and give

a classification of the propagating degrees of freedom. We find that additional pathological poles

(negative norm ghosts or tachyons) are unavoidably generated and various scenarios according to

their position are possible. We also briefly comment on the eventual dynamical generation of the

opposite parity resonances which are frozen at the tree level and discuss the role of appropriate

symmetry which could prevent such a scenario.
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1. Introduction

Recently, effective theories have become a very efficient tool in particle physics. As far as the
strong interactions are concerned, the Chiral perturbation theory (χPT) [1], [2], [3] as a low energy
effective theory of QCD provides us with a rigorously definedsimultaneous double expansion of
the Green functions of the quark currents in powers (and logarithms) of external momenta and
quark masses which is valid in the energy rangeE � ΛH ∼ 1 GeV. The scaleΛH corresponds to
the mass of the lowest resonances which are separated from the relevant low energy QCD degrees
of freedom, namely the (pseudo)Goldstone bosons (PGB) which are identified with the members
of the lightest pseudoscalar octet, by a mass gap. Thanks to this mass gap the dynamics of the
higher energy degrees of freedomE & ΛH can be taken into account effectively and parametrized
by means of the low energy constants (LEC). The corresponding low energy expansion is therefore
possible and well behaved. The formal structure and the technical aspects ofχPT are perfectly
understood and the recent calculations reached the two-loop level which corresponds to the order
O(p6) within the chiral power counting [4].

However, an extension of this successful method to the intermediate energy regionΛH ≤E < 2
GeV is more problematic. The set of relevant degrees of freedom enlarges and contains not only the
PGB but also the low lying resonances. These are not separated by a mass gap from the rest of the
spectrum and therefore the formal expansion in the spirit ofχPT (i.e. a simultaneous expansion
in the momenta and both quark and resonance masses) cannot beexpected to be well-founded.
Fortunately, another type of effective Lagrangian description of this region exists which is based on
the largeNC expansion as well as on the high energy constraints derived from the operator product
expansion (OPE). This was introduced in the pioneering works [5], [6] and now it is known as as
a Resonance Chiral Theory (RχT). It becomes extremely useful for the estimates of the LEC in
terms of the resonance parameters [5], [7], [8], which is necessary in order to connect the recent
O(p6) predictions ofχPT with physical data (cf. also [9]). The theory is organized according to
the largeNC expansion: the interaction vertices are accompanied with the appropriate power of
1/
√

NC for each meson field, the leading order contributions to the Green function are given by the
tree graphs and each loop brings about one additional power of 1/NC. Taking just one resonance
multiplet for each channel and matching such a truncated theory in the UV region with the OPE
(which corresponds to the so-called Minimal Hadronic Ansatz) and withχPT in the infrared was
proved to be sufficient to saturate the values of theO(p4) LEC successfully at the leading order in
1/NC [5].

Such a leading order matching suffers from the fact that the LEC depend on the renormaliza-
tion scale. Therefore, this scale has to be fixed at some value(the saturation scale) at which the
renormalization scale independent results of tree levelRχT are sewed withχPT. This is one of the
reasons why to go beyond the leading order and matchχPT with the one-loopRχT. Also from the
phenomenological point of view, the loops are inevitable inorder to preserve (perturbative) unitar-
ity and to generate finite resonance widths. It is therefore desirable to investigate the one-loopRχT
in more details [10].

However, because the Weinberg formula [1] (according to which the loop calculations are
organized withinχPT) cannot be straightforwardly generalized to the case ofRχT, new aspects
of the renormalization procedure are expected. Namely, because of the presence of a new scale
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corresponding to the mass of the resonances and as a result ofthe nontrivial structure of the higher-
spin resonance propagators, we can encounter mixing of the usual chiral orders in the process of
the renormalization. Also, higher than expected chiral order of counterterms might be necessary
already at the one-loop level. Furthermore, because the spin-one particles are described using fields
transforming under reducible representation of the rotation group, new degrees of freedom (which
were frozen at the tree-level) can come back to the game due tothe loop corrections.

In this paper we would like to concentrate on a particular example of the renormalization of
the one-loop spin-one resonance self-energy and the construction of the corresponding resonance
propagator using a concrete interaction Lagrangian. We will use the antisymmetric tensor field for
definiteness, since in such a formalism all the above aspectsof the renormalization procedure can
be illustrated. In addition we will briefly discuss the problems connected with the appearance of
additional poles in the propagator obtained by means of Dyson re-summation of the one-particle
irreducible insertions. Because the one loop corrections to the self-energy might be relatively large,
these additional poles might lie near the region for which weassumeRχT to be valid. Moreover,
the self-energy has higher order growth in the UV region thanusual and therefore some of these
poles could be negative norm ghosts or tachyons [11]. This might introduce well known problems
with the physical interpretation of the theory due to the violation of unitarity or causality. Due to
the lack of appropriate symmetry, some of the poles correspond to one particle states with opposite
parity than the original degrees of freedom of the tree Lagrangian. We will also briefly discuss the
possibility to interpret the non-pathological poles as dynamically generated higher resonances, as
was done in [12].

2. The Lagrangian of Resonance Chiral Theory

We are going to work in the framework of Chiral perturbation theory where the Lagrangian
is formulated in terms of external sources and pseudoscalarmesons. They transform as an octet
under the groupSU(3)V . We define the chiral building block

u(φ) = exp

(
i

φ√
2F0

)
, (2.1)

whereφ = φaTa with Ta = λ a/
√

2 and

φ(x) =
1√
2





π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K
0 − 2√

3
η



 (2.2)

is the matrix describing the pseudoscalar mesons fields. TheGoldstone bosons are parametrized
by the elementsu(φ) of the coset spaceSU(3)L ×SU(3)R/SU(3)V , transforming as

u(φ) 7→VRu(φ)h(g,φ)−1 = h(g,φ)u(φ)V−1
L (2.3)

under a general chiral rotationg = (VL,VR) ∈ G in terms of theSU(3)V compensator fieldh(g,φ).
The Resonance Chiral Theory enlarges the number of degrees of freedom ofχPT by including

also massive multiplets. Let us now restrict ourselves to the octet of vector resonances 1−− which is
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the subject of our interest. There are several possibilities how to choose corresponding interpolating
fields for them [5, 6, 13]. In this article we use the antisymmetric tensor field which can be written
as

Vµν =





1√
2
ρ0 + 1√

6
ω8 + 1√

3
ω0 ρ+ K∗+

ρ− − 1√
2
ρ0+ 1√

6
ω8 + 1√

3
ω3 K∗0

K∗− K
∗0 − 2√

6
ω8 + 1√

3
ω0





µν

. (2.4)

The fieldsVµν transform in the nonlinear realization of theU(3)L ×U(3)R according to the pre-
scription

Vµν 7→ h(g,φ)Vµν h(g,φ)−1.

The Lagrangian for these field is then

LV = −1
2
〈∇µVµν∇αVαν〉+

1
4

M2〈VµνVµν〉+Lint , (2.5)

where the relevant interaction part (contributing to the renormalization of the resonance self-energy
which is of our interest) is

Lint =
iGV

2
√

2
〈Vµν [uµ ,uν ]〉+d1εµνασ〈{Vµν ,Vαβ}∇β uσ 〉

+d3εαβ µλ 〈{∇νVµν ,Vαβ}uλ 〉+d4ερσ µα〈{∇αVµν ,Vρσ}uν〉+ . . . (2.6)

3. Structure of poles

Let us briefly recall the basic properties of the Lagrangian for spin-1 fields and of the corre-
sponding propagator within the antisymmetric tensor field formalism [5]. We start with the most
general free Lagrangian

LV =
α
2
〈∂µVµν∂ αVαν〉+

β
4
〈∂αVµν∂ αVµν〉+

1
4

M2〈VµνVµν〉 , (3.1)

which leads to the propagator

∆V
µνρσ(p) =

2
(α + β )p2 +M2ΠL

µνρσ +
2

β p2 +M2ΠT
µνρσ , (3.2)

whereΠT andΠL are projectors

ΠT
µναβ =

1
2
(gµαgνβ −gµβ gνα)− 1

2p2

(
gµα pν pβ −gµβ pν pα +gνβ pµ pα −gνα pµ pβ

)
,

ΠL
µναβ =

1
2p2

(
gµα pν pβ −gµβ pν pα +gνβ pµ pα −gνα pµ pβ

)
. (3.3)

The propagator∆V
µνρσ(p) has two poles in general. In order to obtain just one pole (andassuming

M2 > 0) we have to fixα =−1, β = 0 (which is in agreement with (2.5), see [5] for further details)
that leads to the Lagrangian

L = −1
2
〈∂µVµν∂ αVαν〉+

1
4

M2〈VµνVµν〉 . (3.4)
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This Lagrangian is generally used for the description of anyspin-1 resonances inRχT. From (3.4)
we get the usual propagator

∆V
µνρσ(p) = − 2

p2−M2ΠL
µνρσ +

2
M2ΠT

µνρσ . (3.5)

Provided that under parity and charge conjugationVµν 7→ VµνandVµν 7→ −VT
µν respectively, the

pole inΠL sector corresponds to a 1−− resonance . Let us show that the possible pole of∆V
µνρσ(p)

in theΠT sector corresponds to an opposite parity 1+− resonance.

The case of 1+− resonances was studied in detail in [14]. Starting with the fieldBµν describing
a 1+− resonance (nowBµν 7→ −Bµν under parity) we can write the same Lagrangian (3.4) (just
replacingVµν → Bµν). Now, we can introduce a fieldUµν = 1

2εµναβBαβ which has the same
transformation properties with respect to parity as the field Vµν . Rewriting the Lagrangian (3.4) in
terms ofUµν we find

L =
1
12

〈HαµνHαµν〉− 1
4

M2〈UµνU µν〉 , where Hαµν = ∂[αUµν ]cycl
(3.6)

and the corresponding propagator is

∆U
µνρσ(p) = − 2

M2ΠL
µνρσ +

2
p2−M2ΠT

µνρσ . (3.7)

Because theUµν fields describe 1+− resonances and have the same quantum numbers asVµν , the
poles in theΠT sector found in the propagator forVµν indicate the presence of 1+− resonances. For
the free field case there is nothing like that because we fixedα , β to have just one pole in theΠL

sector. If we takeβ 6= 0 in (3.1) then the additional pole (in theΠT sector) is a ghost (forβ < 0)
or a tachyon (forβ > 0). Therefore, we can not have both types of poles at the tree level.

4. Renormalization of the propagator

In the general case when the loop corrections are taken into account one obtains

∆V
µνρσ(p) = − 2

p2−M2−ΣL(p2)
ΠL

µνρσ +
2

M2+ ΣT(p2)
ΠT

µνρσ , (4.1)

whereΣL(p2) andΣT(p2) are the self-energies which are determined at the one-loop level by the
following Feynman graphs:

where the thick lines denote resonances and dashed lines Goldstone bosons. We use the interaction
Lagrangian (2.6) that keeps just leading order operators (in the number of derivatives) with no more
than two resonances. The counterterm Lagrangian (terms with up to six derivatives are needed) is

Lct = L
(0)
ct +L

(2)
ct +L

(4)
ct +L

(6)
ct (4.2)
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with

L
(0)
ct =

1
2

M2ZM〈VµνVµν〉,

L
(2)
ct =

1
2

ZR〈∇αVαµ∇βVβ µ 〉+
1
4
YR〈∇αVµν∇αVµν〉,

L
(4)
ct =

1
4

XR1〈∇2Vµν{∇ν ,∇σ}Vβ µ 〉+
1
8

XR2〈{∇ν ,∇α}Vµν{∇σ ,∇α}Vµσ 〉+ . . . , (4.3)

where we do not write explicitly all dimension four and six operators. For the self-energies we find

ΣL(x) = M2
(

M
4πF

)2
[

3

∑
i=0

αix
i −
(

1
2

(
GV

F

)2

x2B̂(x)+
40
9

d2
3(x2−1)2Ĵ(x)

)]

,

ΣT(x) = M2
(

M
4πF

)2
[

3

∑
i=0

βix
i +

20
9

(
2d2

3 +(d2
3 +6d3d4 +d2

4)x+2d2
4x2)(x−1)2Ĵ(x)

]

,(4.4)

wherex = p2/M2 andB̂(x), Ĵ(x) are loop functions:

B̂(x) = 1− ln(−x), Ĵ(x) =
1
x

[
1−
(

1− 1
x

)
ln(1−x)

]
(4.5)

andαi , βi are renormalization scale independent combinations of thecouplings and logs,e.g.

α0 =

(
4πF
M

)2

Zr
M(µ)− 40

3
d2

1 ln
M2

µ2 − 20
9

(3d2
1 −d2

3) . (4.6)

The complete result can be found in [15].

We see thatΣT(x) has generally non-trivialx dependence, therefore, we can expect the possible
presence of poles also in theΠT sector.

As was indicated in [12] the spectrum of the propagator polesis very diverse. One of them can
be arranged to correspond to the original 1−− resonance we have started with. However, it can be
shown [15] that (provided we fix the couplingd3 according to the OPE for theVVPcorrelator [16])
there exists a nonzero minimal number of additional poles inboth sectors irrespective of the actual
values of the other couplings in the interaction and the counterterm Lagrangians (2.5) and (4.3). For
general values of resonance couplings we could obtain boundstates, virtual states or resonances
and also at least one of the pathological poles like ghosts ortachyons in both theΠT and theΠL

sectors. These additional poles decouple in theNC → ∞ limit when the interaction is switched off,
however for actual values of the couplings they might lie near or even inside the region where we
expected originally the validity ofRχT. We can then assume several possible scenarios.

In the most optimistic one, all the additional poles are far enough and we can treat them as
harmless. Then the theory effectively (i.e. when we consider it in the energy region of its validity)
describes the same number of degrees of freedom as we startedwith on the tree level.

Within another possible scenario only the pathologies are situated far away from the range
of the assumed validity ofRχT (this condition is tricky to satisfy). Then the non-pathological
poles can be treated as a prediction of the theory and identified as dynamically generated higher
resonance states in both 1−− and 1+− channels. This mechanism is the same as used in [17], where
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the scalar resonances were identified as the poles of the propagator (dressed with the pseudoscalar
loops) of the bare quark-antiquark "seed".

The worst variant arises when some of the pathological polesappear within the region of
assumed applicability ofRχT; in such a case the theory will suffer from inconsistences like the
loss of unitarity or acausality.

Let us add several brief remarks concerning the second scenario. Supposee.g. that 1+−

resonances are really generated. The question then is whichprocesses theΠT sector of the prop-
agator can really affect. We can easily find that in the most common cases ofVV correlator,
pion-vector formfactor orπ-π scattering it completely decouples. However, for other processes
like ρ → π+π−γ or πγ −πγ we could obtain some nonzero contribution from these dynamically
generated resonances due to the Feynman graphs

ρ ρ

and (the thick lines denote resonances, dashed lines Goldstone bosons and wavy lines ending with
the cross vertex indicate the insertion of the QED current)

respectively. Generally, if the vertices in the Lagrangianthat couples to the propagator are invariant
under the transformation

Vµν →Vµν + ε µναβ∂α λβ (4.7)

then theΠT sector of the propagator does not affect a given process. This transformation corre-
sponds to an accidental symmetry that some of the vertices posses.

We can also invert our point of view. In the Lagrangian (2.5) we started with the description of
1−− resonance and after renormalization we can get also dynamically generated 1+− ones. So, for
this reason or another one we can ask the question: Which symmetry does prevent the dynamical
generation of the 1+− at the one-loop level,i.e. when isΣT(p2) = 0? As an answer we obtain
the same symmetry as above. If the operators contributing tothe one loop renormalization of the
propagator are invariant under (4.7) thenΣT(p2) = 0 and there are no 1+− resonances. This can
be easily seen in the path integral formalism [15]. The pricefor this is that we have to throw away
many terms in the interaction Lagrangian and finally we may loose the chiral symmetry. Note also
that having the symmetry (4.7) or any other mechanism (whichwould preserve in an ideal case the
chiral symmetry) that freezes the 1+− channel, one has to still care about the self-consistency for
the 1−− degree of freedom,i.e. one has to still face the three above-mentioned scenarios.

5. Conclusions

We have presented here the results of the calculation of the spin-1 resonance self-energy within
Resonance Chiral Theory in the antisymmetric tensor formalism at one-loop. We have found that
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additional poles appear in the corresponding Dyson re-summed propagator some of which are
pathological. We have also briefly discussed various scenarios for their position and consequences
for the physical interpretation of the theory.
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