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1. Introduction

The study of the heavy quark–antiquark system is an old topic(see [1] for earlier references).
Here we will concentrate on recent developments based on effective field theories (EFTs). For large
enough masses, these systems can be considered to be non-relativistic (NR) and are then charac-
terized by, at least, three widely separated scales: hard (the massm, of the heavy quarks), soft (the
relative momentum of the heavy-quark–antiquark pair in thecenter of mass frame|p| ∼mv, v� 1),
and ultrasoft (the typical kinetic energyE ∼ mv2 of the heavy quark in the bound state system).
In 1986, NRQED [2], an EFT for NR leptons, was presented. NRQED is obtained from QED by
integrating out the hard scalem. NRQCD [3] was born soon afterwards. NRQCD has proved to
be extremely successful in studyingQ-Q̄ systems near threshold. The Lagrangian of NRQCD can
be organized in powers of 1/m, thus making explicit the NR nature of the physical systems,yet
its connection with a NR quantum mechanical formulation of the problem was still obscure. For
instance, in QED, in a first approximation, the dynamics of the Hydrogen atom can be described by
the solution of the Schrödinger equation with a Coulomb potential. However, it is not always clear
how to derive this equation from the more fundamental quantum field theory, QED, much less how
to get corrections in a systematic way. A similar problem is faced in heavy quarkonium systems.
One efficient solution to this problem comes from the use of effective field theories (EFTs) and in
particular of potential NRQCD (pNRQCD) [4]1. This EFT takes full advantage of the hierarchy of
scales that appear in the system:

m� mv� mv2 · · · (1.1)

and makes systematic and natural the connection of the Quantum Field Theory with the Schrödinger
equation. Roughly speaking the EFT turns out to be somethinglike:

(

i∂0−
p2

m
−V(0)

s (r)

)

Φ(r) = 0

+ corrections to the potential
+interaction with other low−energy degrees of freedom







pNRQCD

whereV(0)
s (r) '−Cf αs/r in the perturbative case andΦ(r) is theQ̄–Q wave-function.

The key point in the construction of the EFT is to determine the kinematic situation we want
to describe. This fixes the (energy of the) degrees of freedomthat appear as physical states (and
not only as loop fluctuations). In our case the degrees of freedom in pNRQCD are kept to have
E ∼ mv2. In order to derive pNRQCD we sequentially integrate out thelarger scales:

E ∼ mv2

QCD

NRQCD

pNRQCD

Integrating out the hard scale (m)

Integrating out the soft scale (mv)

1For a comprehensive review of pNRQCD see [5].
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In order to be more specific in what follows we distinguish between the situation withmv�
ΛQCD (weak coupling) and withmv' ΛQCD (strong coupling).

2. pNRQCD AT WEAK COUPLING

In this section, we highlight the main techniques needed in order to efficiently perform high-
precision perturbative computations in weakly coupled NR bound state systems. They can be
summarized in four points:

1. Matching QCD to NRQCD: Relativistic Feynman diagrams

2. Matching NRQCD to pNRQCD (getting the potential): NR (HQET-like) Feynman diagrams

3. Observable: Quantum mechanics perturbation theory

4. Observable: Ultrasoft loops

The first two points explain the techniques needed to obtain pNRQCD from QCD, whereas the
last two explain the kind of computations faced in the EFT when computing observables. All the
computations can be performed in dimensional regularization and only one scale appears in each
type of integral, which becomes homogeneous. This is a very strong simplification of the problem.
In practice this is implemented in the following way:

Point 1). One analytically expands over the three-momentum and residual energy in the inte-
grand before the integration is made in both the full and the effective theory [6, 7].

QCD
∫

d4q f(q,m, |p|,E) =

∫

d4q f(q,m,0,0)+O

(
E
m

,
|p|
m

)

∼C(
µ
m

)(tree level)|NRQCD

NRQCD
∫

d4q f(q, |p|,E) =

∫

d4q f(q,0,0) = 0!! (2.1)

Therefore, the computation of loops in the effective theoryjust giveszeroandone matches loops
in QCD with only one scale (the mass) to tree level diagrams inNRQCD, which we schematically
draw in the following figure:

µ ) + Ο(1/=   C(m/
m

=   C(m/µ)
m

+ .....

NRQCDQCD

2

m^2)
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Point 2) works analogously [8]. One expands in the scales that are left in the effective theory.
We integrate out the scalek (transfer momentum between the quark and antiquark) or its Fourier
transform variabler. Again loops in the EFT are zero and only tree-level diagramshave to be
computed in the EFT:

NRQCD
∫

d4q f(q,k, |p|,E) =

∫

d4q f(q,k,0,0)+O

(
E
k

,
|p|
k

)

∼ δhs(potential) (2.2)

pNRQCD
∫

d4q f(q, |p|,E) =

∫

d4q f(q,0,0) = 0!! (2.3)

We illustrate the matching in the figure below. Formally the one-loop diagram is equal to the QCD
diagram shown above. The difference is that it has to be computed with the HQET quark propagator
(1/(q0 + iε)) and the vertices are also different.

p
>

p′ >

k = p−p′
V

2

α
k

=

m

1
m

V
1
m

2

α 2
(ln k+c) =

NRQCD pNRQCD

Once we have obtained the potentials we have all the ingredients of the pNRQCD Lagrangian.
In order to write it in a more compact form, with gauge invariance and the multipole expansion
explicit, is convenient to project to the quark-antiquark sector and to express the quark-antiquark
state in terms of a single bilinear field, which, by means of field redefinitions, is decomposed in
S and O, two fields that transform as a singlet and octet under ultrasoft gauge transformations.
Finally,

L = S
(

i∂ 0−h(0)
s −δhs

)

S+O
(
iD0−ho

)
O+VASr ·EO+ · · · (2.4)

whereh(0)
s ' p2

m +V(0)
s (r) andδhs schematically represents the corrections to the potential.

Observables. Once the Lagrangian of pNRQCD has been obtained one can compute observ-
ables. A key quantity in this respect is the Green function. In order to go beyond the leading order
description of the bound state one has to compute corrections to the Green Function (HI ∼ x ·E
schematically represents the interaction with ultrasoft gluons of the singlet and octet field):

Gs(E) =
1

h(0)
s + δhs−HI −E

= G(0)
s + δGs G(0)

s (E) =
1

h(0)
s −E

.

These corrections can be organized as an expansion in 1/m, αs and the multipole expansion. Two
type of integrals appear then, which correspond to points 3)and 4) above.
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Point 3). For example, if we were interested in computing the spectrum atO(mα6
s ) (for QED

see [9]), one should consider the iteration of subleading potentials (δhs) in the propagator:

δGpot.
s =

δhs δhs δhs
+ · · ·+

∼ 1

h(0)
s −E

δhs
1

h(0)
s −E

+
1

h(0)
s −E

δhs
1

h(0)
s −E

δhs
1

h(0)
s −E

+ · · ·.

At some point, these corrections produce divergences. For example, a correction of the type:
δ (r)G(0)

s (Cf αs/r)G(0)
s δ (r), would produce the following divergence

〈r = 0| 1

E−p2/m
Cf

αs

r
1

E−p2/m
|r = 0〉 (2.5)

∼
∫

dd p′

(2π)d

∫
dd p

(2π)d

m
p′2−mE

Cf
4παs

(p−p′)2

m
p2−mE

∼−Cf
m2αs

16π

(
1
ε

+2ln(
mE
µp

)+ · · ·
)

.

Nevertheless, the existence of divergences in the effective theory is not a problem, since they get
absorbed in the potentials (δhs).

Point 4). The same happens with ultrasoft gluons, [10, 11, 12]:

δGus
s =

︸ ︷︷ ︸

1/(E−ho)

∼ G(0)
s (E)

∫
ddk

(2π)d r
k

k+ho−E
rG(0)

s (E)

∼ G(0)
s (E)r(ho−E)3

{
1
ε

+ γ + ln
(ho−E)2

ν2
us

+C

}

rG(0)
s (E) , (2.6)

which also produces divergences that get absorbed inhs. Overall, we get a consistent EFT.

By obtaining the poles of the Green function one obtains the spectroscopy of the bound state.
From the normalization of the Green function one can obtain inclusive electromagnetic decays,
NR sum rules, and, in general, describe heavy quarkonium production near threshold. All these
observables can be obtained from the vacuum polarization

(qµ qν −gµν)Π(q2) = i
∫

d4xeiqx〈vac|T{Jµ(x)Jν(0)}|vac〉 ,

which in the NR limit (c1 has been computed up toO(α2
s ) in Ref. [13] for QED and in Refs.

[14, 15] for QCD, there are also some partial results atO(α3
s ) [16])

Jµ = Q̄γµQ = c1ψ†σ χ + · · · , c1 = 1+a1αs+a2α2
s + · · · ,

schematically reads
Π(q2) ∼ c2

1〈r = 0|Gs(E)|r = 0〉

Gs(0,0,E) =
∞

∑
m=0

|φ0m(0)|2
E0m−E+ iε − iΓt

+
1
π

∫ ∞

0
dE′ |φ0E′(0)|2

E0E′ −E+ iε − iΓt
.
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For instance, for inclusive electromagnetic decays we would have

Γ(V → e+e−) ∼ 1
m2c2

1|φ(0)|2 (2.7)

|φn(0)|2 =
∣
∣
∣φ (0)

n (0)
∣
∣
∣

2
(1+ δφn) = Res

E=En

Gs(0,0,E) . (2.8)

Note that|φn(0)|2 is scheme andscale dependent.

For heavy quarkonium production we would have

σt−t̄(s) ∼ c1(ν)2ImGs(0,0,
√

s)+ · · · (2.9)

and for NR sum rules

Mn ≡
12π2e2

b

n!

(
d

dq2

)n

Π(q2)
∣
∣
q2=0 ' 48πe2

bNc

∫ ∞

−∞

dE
(E +2mb)2n+3

(

c2
1−c1d1

E
3mb

)

ImGs(0,0,E)

(2.10)

There is and has been an ongoing effort in obtaining the Greenfunctions (including the po-
tentials) and the mathing coefficientscs with higher degree of accuracy (either at finite order or
with renormalization group improvement). For the Green functions/potential one aim is obtaining
expressions with NNNLO precision, for which there are some partial results [17, 18, 19, 20, 21,
22, 23, 24]. Note as well that it is possible to perform the resumation of large logarithms by us-
ing renormalization group equations in pNRQCD, see for instance [25, 26]. These results were
confirmed in Ref. [27] within the vNRQCD framework.

3. pNRQCD AT STRONG COUPLING

So far we have restricted our considerations to the situation ΛQCD <∼ mv2. It is doubtful
whether we can consider most of the charmonium and bottomonium spectrum to be in this sit-
uation but rather in the (generic) non-perturbative case with mv∼ ΛQCD. Then, it is not clear, a
priori, what is the power counting that should be used for these systems. In particular, it is less
clear how to obtain a rigorous connection between NRQCD and potential models (if it exists), al-
though naively one would expect that, to some extent, the same philosophy as used previously to
obtain pNRQCD could also be followed here. Heavy quarkonium(b-b̄, c-c̄) systems have been
traditionally described by potential models in the past, being their inverse size assumed to be of
O(ΛQCD) (and thatΛQCD � m). Potential models are characterized by the introduction of a, more
or less, phenomenological potential in a Schroedinger equation. By assuming some functionality
in r and by fitting the free parameters of the potential, a relatively good description of the heavy
quarkonium spectrum was obtained. Nevertheless, there were two issues: 1) under which circum-
stances, and how, a pure Schroedinger formulation will emerge from QCD in the non-perturbative
regime and, if so, 2) how to obtain the potentials from QCD, or, at least, how to relate them with
objects eventually computable in QCD (then any potential model should, at least, be consistent
with points 1) and 2)). The use of EFTs has helped to clarify when point 1) is satisfied and how it
can be derived from QCD (see [28, 29]). The procedure is similar to the one at weak coupling:

6
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1. Matching QCD to NRQCD: Relativistic Feynman diagrams2

2. Matching NRQCD to pNRQCD (getting the potential): Potential=Wilson loops

3. Observable: Quantum mechanics perturbation theory

4. Observable: Ultrasoft loops3

-3

-2

-1

0

1

2

3

4

0.5 1 1.5 2 2.5 3

[V
(r

)-
V

(r
0)

]r
0

r/r0

Σg
+

Πu

2 mps

mps + ms

quenched
κ = 0.1575

Figure 1: r0 ' 0.5 fm. From SESAM [30].

Point 2. The matching scale isνus � ΛQCD. Therefore, coloured-like degrees of freedom
decouple, since the mass gap of hybrids and glueballs is ofO(ΛQCD∼ mv)� mv2 (see fig. 1). This
means that at strong coupling the octet and (soft) gluons fields can be integrated out. Since we also
assume that there are not ultrasoft gluons, our interpolating field is justS (we restrict ourselves to
pure QCD with not light fermions) and the pNRQCD Lagrangian reads

LpNRQCD= S†
(

i∂0−hs

)

S, (3.1)

wherehs is the Hamiltonian of the singlet, i.e. of the heavy quarkonium. Schematicallyhs is only
a function ofr = x1−x2 andp =−i∇x. It is analytic inp but contains non-analyticities inr. h can
be written as an expansion in 1/m:

hs =
p2

m
+V(0)

s +
V(1)

s

m
+

V(2)
s

m2 + · · · . (3.2)

Now the whole issue is to obtain the potential in terms of Wilson loops. The first attempts
to answer this question started more than twenty five years ago. The expression for the leading

2The procedure is similar to the one of the previous section sowe will not consider it further.
3In this case it refers to effects due to light particles (pions), which we will not consider here.
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spin-independent potential, ofO(1/m0), corresponds to the static Wilson loop and was derived by
Wilson and Susskind [31]:

V(0)(r) = lim
T→∞

i
T

ln〈W2〉 = −Cf
αs

r
+O(α2

s ). (3.3)

Some expressions for the leading spin-dependent potentials in the 1/mexpansion, ofO(1/m2),
were given in Refs. [32]. The procedure followed in these works proved to be very difficult to
extend beyond these leading-order potentials. In Ref. [33], a new method to calculate the potentials
was proposed, where new spin-independent (some of them momentum-dependent) potentials at
O(1/m2) were obtained. In [34], expressions for the spin-dependentpotentials were obtained in
terms of eigenstates of the static limit of the NRQCD Hamiltonian in the Coulomb gauge. In
these works, the potentials did not correctly reproduce theultraviolet behaviour expected from
perturbative QCD (the hard logs∼ logm). This was the first signal that a controlled derivation of
the potentials from QCD was needed. The solution to this problem needs of NRQCD, where the
ultraviolet behavior is encoded in the matching coefficients of the NRQCD operators. It is then
possible to incorporate them to the potentials as done in [35, 36]. At that point, the obtained set of
potentials atO(1/m2) seemed to be complete. Nevertheless, this view was challenged in Refs. [28,
29], where a systematic study of the potential has been done within an EFT framework: pNRQCD.
The main improvements achieved in Refs. [28, 29] with respect these previous computations can
be summarized as follows:

A) A general procedure to compute the potential by equating green functions in NRQCD and
pNRQCD order by order in 1/mhas been developed [28]. For illustration, within this frame-
work, the leading order potential corresponds to Eq. (3.3) and is obtained by computing

〈0|Q†
2(x2)φ(x2,x1)Q1(x1)Q

†
1(y1)φ(y1,y2)Q2(y2)|0〉,

both in NRQCD
δ 3(x1−y1)δ 3(x2−y2)〈W2〉,

and in pNRQCD

Zs(r)δ 3(x1−y1)δ 3(x2−y2)e
−iTV(0)

s (r) .

B) The general method has been developed, and formal recursive equations have been provided,
to obtain the potential at any order in 1/m in terms of matrix elements and energies of the
states solution of the static limit [28, 29]. These expressions can then be rewritten in terms
of Wilson loops.

Points A) and B) solve, in alternative ways, question 2) and,thus, finally settle this issue,
opened since more than twenty five years ago. Once the formalism has been developed, thecom-
plete potential (up to field redefinitions) in pure gluedynamics upto O(1/m) in [28] and up to
O(1/m2) in [29] have been obtained for the first time.

Let us stress that, to date, A) and B) are the only available methods in the literature to compute
the potential in terms of Wilson loops within asystematicexpansion in 1/m. The attempts to imple-
ment the method of Eichten and Feinberg beyond their leading-order results were not able to obtain

8
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finite expressions [37]. Indeed, in a way, the procedure A) can be seen as the generalization of the
Eichten and Feinberg method. In order to obtain this generalization it was crucial to understand
the computation within an EFT ideology where equalities between Green functions were imposed
and interpolating fields with arbitrary normalizations used. The method advocated in Ref. [33]
does not appear to be correct, at least in its current formulation, since, for instance, it is not able to
obtain the 1/mpotential. The computations in Ref. [34] essentially provide the correct expressions
for the spin-dependent potentials (once one takes the NRQCDmatching coefficients to tree level
and neglects the tree-level annihilation contribution in the equal mass case). Nevertheless, their
methodology needs to be generalized (along the lines of [28,29]) to take into account the fact that
one is dealing with operators instead that with numbers in these type of computations.

Point 3. Oncehs has been obtained, we can obtain the energies of the bound states as we did
in the weak coupling case by looking at the poles of the Green function. At the order of interest,
one can take the energies from the real part of the Schroedinger equation

(Rehs)〈r|n, l ,s, j〉 = En jls 〈r|n, l ,s, j〉, (3.4)

with quantum numbersn, j, l ands.
From the imaginary piece ofhs, one can obtain the inclusive decay widths (to light hadrons,

leptons or photons) by using the relation

Γ = −2〈n, l ,s, j|Im hs|n, l ,s, j〉. (3.5)

This has been done in Refs. [38, 39] at strong coupling. Actually note that Eqs. (2.8,2.9,2.10) are
valid in the strong coupling limit as well, with the qualification that one has to compute the Green
function with the nonperturbative potentials. For instance, a nice example between the matching of
a potential model (with the right short distance structure and hence consistent with pNRQCD) and
QCD within dimensional regularization can be found in Ref. [40] for the inclusive electromagnetic
decay ratio of the charmonium ground state.

4. PHENOMENOLOGICAL ANALYSIS

pNRQCD should allow for the phenomenological description of the heavy quarkonium states
(except, maybe, those very close to threshold). Then the first natural question is to determinewhich
states belong to the weak/strong coupling regime. The cleanest place to address this question is
the static potential, by checking up to which scale it can be described by a convergent perturbative
series. The outcome is that, once the renormalon cancellation is achieved, the convergence of the
perturbative series greatly improves and, in the cases whenthe comparison is possible, it agrees
with lattice simulations (at least up to around 1 GeV) [41, 42, 43]. See Fig. 2 for illustration.

Spectroscopy at weak coupling
These results encourage the use of the weak coupling versionof pNRQCD for spectroscopy. Its
use for theMϒ(1S) has lead to competitive determinations of the bottom massmb(mb) ∼ 4.2 with
relative good convergence [45, 46, 47, 48]. See Fig. 3 for illustration.

If the bottomonium ground state can be described with the weak coupling version of pNRQCD
it should also be possible to describe its pseudoscalar partner, theηb. Nevertheless the predicted

9
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VRS(r)−VRS(r ′)+Elatt.(r ′)

NNNLO NNLO

NLO
LO

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

r/r0

Figure 2: Static potential in the RS scheme at different orders in perturbation theory plus its comparison
with lattice simulations [44] in the quenched approximation. Taken from Ref. [42].

Mϒ(1S)

ν

2mRS′

NLO
NNLO

LO

1.5 2 2.5 3 3.5 4
9.3

9.35

9.4

9.45

9.5

9.55

Figure 3: Mϒ(1S) at different orders in perturbation theory in the RS scheme.Taken from Ref. [46].

value∼ 40 Mev [49, 50] does not agree very well with the recent experimental determination∼ 70
MeV [51].

With respect to other quarkonium states, theBc(11S0) system has been studied in Refs. [52, 53,
47] obtaining reasonable results:MBc(1S) = 6307±17 MeV. Actually, this figure was a prediction
of the theory prior that the experimental number was obtained: 6287±4.8±1.1 MeV [54, 55].

For higher excitations of bottomonium and charmonium the situation is not conclusive. There
are different claims, whereas in Refs. [21, 56, 57] it is claimed that it is not possible to describe
bottomonium higher excitations in perturbation theory, anopposite stand is taken in Refs. [53, 47,
58, 49]. At this respect we can not avoid mention that Ref. [49] produced a number for theηc(2S)

mass before, and consistent with, the last experimental figures by Babar [59] and Cleo III [60]
(before there were two excluding experimental numbers between Bell [61] and Crystal Ball [62]).

Spectroscopy at strong coupling

10
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The situation at strong coupling is not as developed as at weak coupling. The main reason, ob-
viously, is that the potentials have to be computed non-perturbatively, which, nowadays means
using lattice simulations. Once they have been obtained onecan plug them into the Schroedinger
equation and obtain the spectrum. This program has already been performed in Ref. [36]. Unfor-
tunately, these early computations were performed in the quenched approximation, also the whole
set of relativistic potentials were not included (some of them were not known at that time). Quite
remarkable the 1/m potential was not known at that time. This has changed now by the lattice
evaluation of Ref. [63], They have also provided with new simulations for some of the 1/m2 po-
tentials [64], yet those simulations are still quenched. Itwould be interesting to try to obtain some
of those potentials with dynamical fermions. At present those are only existing for the static po-
tential. Another point is that some of those potentials are ultraviolet divergent. Therefore, they are
scale and scheme dependent. This produces some errors unless the hard matching coefficients are
included and computed in the very same scheme. This is not trivial, since the matching coefficients
are typically computed in dimensional regularization whereas the potentials are computed in the
lattice scheme. Therefore, some theoretical effort is still needed before using the full power of
those nonperturbative lattice simulations.

-2 -1 0 1 2 3 4
EPS=

�!!!
s-2 mPS

0.4

0.6

0.8

1

R
=
Σ

tt
�Σ
Μ
Μ

Μs= 40- 80 GeV

NLO

LO

NNLO

-2 -1 0 1 2 3 4
EPS=

�!!!
s-2 mPS

0.4

0.6

0.8

1

R
=
Σ

tt
�Σ
Μ
Μ

Μs= 40- 80 GeV

NLL

LL

NNLL

Figure 4: Threshold scan fortt̄. The upper figure shows the fixed order results, LO, NLO and NNLO,
whereas the figure belows the RGI results LL, NLL and NNLL are displayed. The soft scale is varied from
µs=40 GeV toµs=80 GeV. From Ref. [65].

Coupling with hard photons
One can study the decays for the bottomonium ground state, inparticular the inclusive electro-
magnetic ones, which are the cleanest theoretically. In this case the convergence is not very good
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2 2.5 3 3.5 4 4.5 5

Μs

0

1

2

3

4

5

M
1
0
@

1
0
-

2
1
D

LL�LO

NLL

NLO

NNLO

NNLL

mRS=4.370 GeV

Figure 5: The moment M10 as a function ofµs at LO/LL, NLO, NLL, NNLO and NNLL for mbRS(2 GeV) =
4.370 GeV in the RS scheme. The experimental moment with its error is also shown (grey band). From Ref.
[68].

[65]. Those objects are specially sensitive to the shape of the wave function and its behavior at the
origin (the hyperfine splitting is also quite sensitive to the wave function). It may well be that the
present precision of finite order calculations is not enoughto properly reproduce the shape of the
wave function (in the same way that one has to go to high ordersin perturbation theory in order to
properly reproduce the static potential). This problem could be solved by performing even higher
order computations or numerical analysis that include these higher order effects, preliminary com-
putations suggest that this is indeed the case [66]. Actually, it is claimed in Ref. [21] that numerical
solutions of the Schroedinger equation with the exact Coulomb potential may lead to more con-
vergent and stable results with respect the renormalization scale variation. This indeed happens
with the implementation of the renormalization group, as ithas been shown int-t̄ production near
threshold [67, 65] (see Fig. 4) or sum rules [68] (see Fig. 5).In this last case it has also lead to a
more accurate determination of the bottom mass:

mb,PS(2GeV) = 4.52±0.06 GeV
mb,RS(2GeV) = 4.37±0.07 GeV

}

→ mb(mb) = 4.19±0.06GeV,

where the perturbative series is sign-alternating. This isthe opposite than for electromagnetic de-
cays. The convergence of the perturbative series in sum rules is also better than in electromagnetic
decays. This should be compared with finite order determinations of the bottom mass from NR sum
rules, which suffer from very huge theoretical uncertainties (which are not always incorporated in
the errors): bad scale dependence and bad convergence of theperturbative series. Therefore, they
can not provide with precise determinations of the bottom mass.

Finally, we would like to mention semi-inclusive radiativedecays of theϒ(1S), which have
been studied in Ref. [69], where relative good agreement with experiment has been obtained. See
Fig. 6. Related with this work there has been a determinationof αs [71] using

Rγ ≡
Γ[ϒ(1S) → γX]

Γ[ϒ(1S) → X]
→ αs(Mz) = 0.120+0.005

−0.006

with claimed accuracy of orderO(αs,v2).
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Figure 6: Photon spectrum from CLEO data. The solid lines are the NLO merging plus the fragmentation
contributions: the red and blue line are obtained using different estimates for

〈
ϒ(1S)|O8(

3S1)|ϒ(1S)
〉
. The

grey shaded region is obtained by varyingµc by
√

2±1µc. The green shaded region shows the zone where
the calculation of the shape functions is not reliable. The pink dashed line is the result from Fleming et al.
[70], where only color singlet contributions were included. From Ref. [69].

5. CONCLUSIONS

We have at our disposal of an EFT from QCD that describes HeavyQuarkonium: pNRQCD.
It provides with an smooth connection with potential models. The problem can be formulated in
a NR quantum mechanical fashion in terms of Schroedinger equations. Every computation can be
performed in dimensional regularization. We have two versions of this effective theory depending
on whether the potentials can be computed within perturbation theory:

• Weak coupling regime (more predictive).

• Strong coupling regime (less predictive).

Obviously one of the major issues is to distinguish which bound states (i.e. range of energies)
belong to which regime. This may provide with a much better understanding of the QCD dynamics.
In any case the study of heavy quarkonium provides with good determinations of some of the
parameters of the standard model. For instance:
b-b̄ NR sum rules and/orϒ(1S) mass→ mb mass.
t-t̄ production near threshold→ mt mass.
Semiinclusive radiative decays ofϒ(1S) → αs(Mz).
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