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We discuss the application of the permutation groupSN to a few problems in hadron physics.

In Ref. [11] a method was proposed for matching a quark model Hamiltonian onto the effective

Hamiltonian of the 1/Nc expansion, which makes use of the transformation properties of the

states and operators underSN . This method is used in [13] to obtain information about the spin-

flavor structure of the quark interaction Hamiltonian from the spectrum of the negative parity

L = 1 excited baryons. Assuming the most general 2-body quark Hamiltonian, we derive two

correlations among the masses and mixing angles of these states which should hold in any quark

model. These correlations constrain the mixing angles, andcan be used to test for the presence

of 3-body quark interactions. We find that the pure gluon-exchange model is disfavored by data,

independently of any assumptions about the hadronic wave functions.
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1. Introduction

Quark models provide a simple and intuitive picture of the physics of ground state baryons
and their excitations [1, 2]. An alternative description isprovided by the 1/Nc expansion, which is
a systematic and model-independent approach to the study ofbaryon properties [3]. This program
can be realized in terms of a quark operator expansion, whichgives rise to a physical picture similar
to the one of the phenomenological quark models, but is closer connected to QCD. In this context
quark models gain additional significance.

The 1/Nc expansion has been applied both to the ground state and excited nucleons [4, 5, 6, 7].
In the system of negative parityL = 1 excited baryons this approach has yielded a number of
interesting insights:

• The three towers [5, 8, 9] predicted byK -symmetry for theL = 1 negative parityN∗ baryons,
labeled byK = 0,1,2 with K related to the isospinI and spinJ of theN∗’s by I +J ≥K ≥

|I − J|.

• The vanishing of the strong decay widthΓ(N∗
1
2
→ [Nπ]S) for N∗

1
2

in theK = 0 tower, which

provides a natural explanation for the relative suppresionof pion decays for theN∗(1535)
[5, 8, 9].

• The orderO(N0
c ) mass splitting of theSU(3) singletsΛ(1405) - Λ(1520) in the [70,1−]

multiplet [7].

The 1/Nc expansion for the excited nucleons has been extended also tothe first subleading
order in 1/Nc [4, 5, 6, 7, 8, 10].

In a recent paper [11] we showed how to match an arbitrary quark model Hamiltonian onto
the operators of the 1/Nc expansion, thus making the connection between these two physical pic-
tures. This method makes use of the transformation of the states and operators underSsp−fl

N , the
permutation group ofN objects acting on the spin-flavor degrees of the quarks. Thisis similar to
the method discussed in Ref. [12] forNc = 3 in terms ofSorb

3 , the permutation group of 3 objects
acting on the orbital degrees of freedom.

The main result of [11] can be summarized as follows: consider a two-body quark Hamiltonian
Vqq = ∑i< j Oi jRi j, whereOi j acts on the spin-flavor quark degrees of freedom, andRi j acts on the or-
bital degrees of freedom. Then the hadronic matrix elementsof the quark Hamiltonian on a baryon
state|B〉 contains only the projectionsOα of Oi j onto irreducible representations ofSN , the per-
mutation group ofN objects acting on the spin-flavor degrees of freedom〈B|Vqq|B〉= ∑α Cα〈Oα〉.
The coefficientsCα are related to reduced matrix elements of the orbital operators Ri j, and are
given by overlap integrals of the quark model wave functions.

The explicit calculation in Ref. [11] confirms theNc power counting rules of Ref. [4, 6], in
particular the leading orderO(N0

c ) contribution to the mass coming from the spin-orbit interaction
~s ·~l, and confirms in a direct way the prediction of the breaking oftheSU(4) spin-flavor symmetry
at leading order inNc [4]. The calculation in Ref. [11] confirms that the nonrelativistic quark model
with gluon mediated quark interactions displays the same breaking phenomenon.

Another important conclusion following from theSN analysis is that operators depending on
excited and core quarks are indeed required by a correct implementation of the 1/Nc expansion, in
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Table 1: The most general two-body spin-flavor quark interactions and their projections onto irreducible
representations ofS3, the permutation group of three objects acting on the spin-flavor degrees of freedom.
C2(F) = F2−1

2F is the quadratic Casimir of the fundamental representationof SU(F).

Operator Oi j OS OMS

Scalar 1 1 −

ta
i ta

j T 2−3C2(F) T 2−3t1Tc −3C2(F)

~si ·~s j ~S2− 9
4

~S2−3~s1 ·~Sc −
9
4

~si ·~s jta
i ta

j G2− 9
4C2(F) 3g1Gc −G2+ 9

4C2(F)

Vector (symm) ~si +~s j ~L ·~S 3~L ·~s1−~L ·~S
(~si +~s j)ta

i ta
j

1
2Li{Gia,T a}−C2(F)LiSi 21−F

F LiSi
c + Ligia

1 T a
c + Lita

1Gia
c

Vector (anti) ~si −~s j − 3~L ·~s1−~L ·~S
(~si −~s j)ta

i ta
j − Ligia

1 T a
c −Lita

1Gia
c

Tensor (symm) {sa
i ,s

b
j} Li j

2 {Si,S j} 3Li j
2 {si

1,S
j
c}−Li j

2 {Si,S j}

{sa
i ,s

b
j}tc

i tc
j Li j

2 {Gia,G ja} Li j
2 gia

1 G ja
c − F−1

4F Li j
2 {Si

c,S
j
c}

Tensor (anti) [sa
i ,s

b
j ] − 0

[sa
i ,s

b
j ]t

c
i tc

j − 0

contrast to the approach of Ref. [17] which does not include such operators, and does not predict a
breaking ofSU(4) spin-flavor symmetry at leading order inNc.

Any particular model of quark interactions, e.g the one-gluon exchange model (OGE) [1], or
the Goldstone boson exchange model (GBE) [14], predicts a distinct hierarchy among the coeffi-
cientsCα of the 1/Nc expansion. This prediction can be used to discriminate among models by
confronting it against the observed values of the coefficients.

In a recent paper [13] we used theSN approach to study the predictions of the quark model
with the most general 2-body quark interactions, and to obtain information about the spin-flavor
structure of the quark interactions from the observed spectrum of theL = 1 negative parity baryons.
This talk summarizes the main results of this paper.

2. The most general two-body quark Hamiltonian

The most general 2-body quark interaction Hamiltonian in the constituent quark model can be
written in generic form asVqq = ∑i< j Vqq(i j) with

Vqq(i j) = ∑
k

f0,k(ri j)OS,k(i j)+ f a
1,k(ri j)O

a
V,k(i j)+ f ab

2,k(ri j)O
ab
T,k(i j) , (2.1)

whereOS,Oa
V ,Oab

T act on spin-flavor, andfk(ri j) are functions ofri j = |r i − r j|. Their detailed form
is unimportant for our considerations.a,b = 1,2,3 denote spatial indices.

We list in Table 1 a complete set of spin-flavor 2-body operators with all possible Lorentz
structures allowed by the orbital angular momentumL = 1. Columns 3 and 4 of Table 1 list the
projections of the spin-flavor operatorsOS,Oa

V ,Oab
T onto the irreducible representations of theS3

permutation group, computed as explained in Ref. [11]. The representation content depends on
the symmetry ofOi j under the permutation[i j]: the symmetric operatorsOi j are decomposed as
S+ MS, and antisymmetricOi j asMS+ A.

3



P
o
S
(
E
F
T
0
9
)
0
2
7

Permutation group SN and hadron spectroscopy Dan Pirjol

The symmetricS projection depends only on quantities acting on the entire hadronSi,T a,Gia,
while the mixed-symmetricMS operators depend on operators acting on the core and excited
quarks. We express them in a form commonly used in the application of the 1/Nc expansion [6],
according to which their matrix elements are understood to be evaluated on the spin-flavor state
|Φ(SI)〉 constructed as a tensor product of an excited quark with a symmetric core with spin-flavor
Sc = Ic. The antisymmetric operators contain also anA projection; its orbital matrix element van-
ishes forNc = 3 because of T-invariance [11, 12], such that these operators do not contribute, and
are not shown in Table 1.

The orbital matrix elements yield factors ofLi,Li j
2 = 1

2{Li,L j}− 1
3δ i jL(L + 1), which are the

only possible structures which can carry the spatial index.

From Table 1 one finds that the most general form of the mass operator in the presence of
2-body quark interactions is a linear combination of 10 operators

O1 = T 2 , O2 =~S2
c , O3 =~s1 ·~Sc , O4 =~L ·~Sc , O5 =~L ·~s1 , O6 = Lita

1Gia
c , (2.2)

O7 = Ligia
1 T a

c , O8 = Li j
2 {Si

c,S
j
c} , O9 = Li j

2 si
1S j

c , O10 = Li j
2 gia

1 G ja
c .

This gives the most general form of the hadronic mass operator of the negative parityL = 1 states
allowing only 2-body quark operators.

3. Correlations

The L = 1 quark model states include the following SU(3) multiplets: two spin-1/2 octets
81

2
,8′1

2
, two spin-3/2 octets 83

2
,8′3

2
, one spin-5/2 octet 8′5

2
, two decuplets 101

2
,103

2
and two singlets

11
2
,13

2
. States with the same quantum numbers mix, and we define the relevant mixing angles in

the nonstrange sector as

{

N(1535) = cosθN1N1/2 +sinθN1N ′
1/2

N(1650) = −sinθN1N1/2 +cosθN1N ′
1/2

,

{

N(1520) = cosθN3N3/2+sinθN3N ′
3/2

N(1700) = −sinθN3N3/2 +cosθN3N ′
3/2

(3.1)

It turns out that the 11 coefficientsC0−10 contribute to the mass operator of the negative
parity N∗ states only in 9 independent combinations:C0,C1 −C3/2,C2 +C3,C4,C5,C6,C7,C8 +

C10/4,C9 − 2C10/3. This implies the existence of two universal relations among the masses of
the 9 multiplets plus the two mixing angles, which must hold in any quark model containing only
2-body quark interactions.

The first universal relation involves only the nonstrange hadrons, and requires only isospin
symmetry. It can be expressed as a correlation among the two mixing anglesθN1 and θN3 (see
Fig. 1 left)

1
2
(N(1535)+ N(1650))+

1
2
(N(1535)−N(1650))(3cos 2θN1 +sin2θN1) (3.2)

−
7
5
(N(1520)+ N(1700))+ (N(1520)−N(1700))

[

−
3
5

cos2θN3 +

√

5
2

sin2θN3

]

= −2∆1/2 +2∆3/2−
9
5

N5/2 .
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Figure 1: Left: correlation in the(θN1,θN3) plane in the quark model with the most general 2-body quark
interactions. Right: prediction for the spin-weightedΛ̄ mass in the SU(3) limit as a function of theθN1

mixing angle, corresponding to the two solutions forθN3. The green points correspond tōΛ = Λ̄exp−(100±
30) MeV, with Λ̄exp = 1481.7±1.5 MeV.

This correlation holds also model independently in the 1/Nc expansion, up to corrections of order
1/N2

c , since for non-strange states the mass operator to orderO(1/Nc) [6, 7] is generated by the
operators in Eq. (2.2). An example of an operator which violates this correlation isLig ja{S j

c ,Gia
c },

which can be introduced by 3-body quark forces.
On the same plot we show also the values of the mixing angles obtained in several analyses of

theN∗→Nπ strong decays andN∗ hadron masses. The two black dots correspond to the mixing an-
gles(θN1,θN3) = (22.3◦,136.4◦) and(22.3◦,161.6◦) obtained from a study of the strong decays in
Ref. [15]. The second point is favored by a 1/Nc analysis of photoproduction amplitudes Ref. [16].
The yellow square corresponds to the values used in Ref. [6, 7] (θN1,θN3) = (35.0◦,174.2◦), and
the triangle gives the angles corresponding to the solution1′ in the largeNc analysis of Ref. [8]
(θN1,θN3) = (114.6◦,80.2◦). All these determinations (except the triangle) are compatible with
the rangesθN1 = 0◦−35◦,θN3 = 135◦−180◦. They are also in good agreement with the correla-
tion Eq. (3.2), and provide no evidence for the presence of 3-body quark interactions.

The second universal relation expresses the spin-weightedSU(3) singlet mass̄Λ = 1
6(2Λ1/2 +

4Λ3/2) in terms of the nonstrange hadronic parameters

Λ̄ =
1
6
(N(1535)+ N(1650))+

17
15

(N(1520)+ N(1700))−
3
5

N5/2(1675)−∆1/2(1620) (3.3)

−
1
6
(N(1535)−N(1650))(cos 2θN1 +sin2θN1)+ (N(1520)−N(1700))(

13
15

cos2θN3−
1
3

√

5
2

sin2θN3) .

The rhs of Eq. (3.3) is plotted as a function ofθN1 in the right panel of Fig. 1, where it can be
compared against the experimental valueΛ̄ = 1481.7± 1.5 MeV. Allowing for SU(3) breaking
effects ∼ 100 MeV, this constraint is also compatible with the range for θN1 obtained above from
direct determinations of the mixing angles.

Combining the Eqs. (3.2) and (3.3) gives a determination of the mixing angles from hadron
masses alone, in contrast to their usual determination fromN∗ → Nπ decays. The green area in
Fig. 1 shows the allowed region for(θN1,θN3) compatible with a positive SU(3) breaking correction
in Λ̄ of 100±30 MeV. One notes a good agreement between this determination of the mixing angles
and that fromN∗ → Nπ strong decays.
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4. Spin-flavor structure of the quark interactions

We derive next constraints on the spin-flavor structure of the quark interaction, which can
discriminate between models of effective quark interactions. There are two popular models used in
the literature. The first model is the one-gluon exchange model (OGE) [1] which includes operators
in Table 1 without isospin dependence. Expressed in terms ofthe operator basisO1−10 this gives
the constraints

OGE : C1 = C6 = C7 = C10 = 0. (4.1)

An alternative to the OGE model is the Goldstone boson exchange model (GBE) [14]. In
this model quark forces are mediated by Goldstone boson exchange, and the quark Hamiltonian
contains all the operators in Table 1 which contain the flavordependent factorta

i ta
j . The coefficients

of the hadronic HamiltonianCi satisfy the constraints (F = 3 is the number of light quark flavors)

GBE : C1 =
F
4

C3 , C5 = C9 = 0. (4.2)

We would like to determine the coefficientsCi, and compare their values with the predictions
of the two models Eqs. (4.1), (4.2). As mentioned, only 9 combinations of the 11 coefficients can be
determined from the available data:C0,C1−C3/2,C2 +C3,C4,C5,C6,C7,C8 +C10/4,C9−2C10/3.
In particular, as the coefficients of the spin-orbit interaction termsC4−7 can be determined, we
propose to use their values to discriminate between different models of quark interaction.

The values ofC4−7 can be compared with the hierarchy expected in each model. Inthe OGE
model the flavor-dependent operators have zero coefficientsC6,7 ∼ 0 ≪ |C4,5|, while in the GBE
model the spin-orbit interaction of the excited quark vanishesC5 ∼ 0≪ |C4,6|.

The coefficientC5 = 75.7±2.7 MeV is fixed by theΛ3/2−Λ1/2 splitting [7]. This indicates
the presence of the operatorssi ± s j in the quark Hamiltonian, which is compatible with the OGE
model. A suppression of the coefficientsC6,7 would be further evidence for the OGE model. We
show in Fig. 2 the coefficients of the spin-orbit operatorsC6,7 as functions ofθN1. Within errors
small values forC7 are still allowed, however no suppression is observed forC6. This indicates the
presence of the operators(si ± s j)ta

i ta
j in the quark Hamiltonian. These results show that the quark

Hamiltonian is a mix of the OGE and GBE interactions.
In the pure OGE model Eq. (4.1) the 7 nonvanishing coefficients Ci can be determined from

the 7 nonstrangeN∗,∆∗ masses (assuming only isospin symmetry but no specific form of the wave
functions). This fixes the mixing angles, and theΛ3/2−Λ1/2 splitting, up to a 2-fold ambiguity.
The allowed region for mixing angles is shown as the violet region in Fig. 1 left, and the central
values as diamonds(θN1,θN3) = (64.2◦,98.2◦),(114.5◦ ,88.2◦). Note that they are different from
the angles obtained in the Isgur-Karl model(31.7◦,173.6◦) in Refs. [2, 18, 19].

The violet region nearθN1 ∼ 0 is consistent with the determinations from strong decays and
from the SU(3) universal relation Eq. (3.3), but is ruled outby the prediction for theΛ splitting, in
agreement with the non-zero value ofC6 that can be read off from Fig. 2. This implies that the pure
OGE model is disfavored1.

1Note that this argument neglects possible long-distance contributions to theΛ splitting, due to the proximity of the
Λ(1405) to theKN threshold. Such threshold effects are not described by the quark Hamiltonian Eq. (2.1), and their
presence could invalidate the prediction of theΛ splitting in the OGE model.
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Figure 2: The coefficients of the spin-orbit operatorsC6,7 as functions of the mixing angleθN1, in the quark
model with the most general 2-body interactions. The green area is obtained by imposing thēΛ constraint.

5. Conclusions

We discussed a few applications of the permutation groupSN to the study of baryonic proper-
ties in the quark model. The applications are based on a simple result: the spin-flavor contents of
the mass operator is directly related to the projections of the spin-flavor part of the quark interaction
onto irreducible representations ofSN . Using this result, any quark Hamiltonian can be matched
onto the effective Hamiltonian of the 1/Nc expansion.

Following Ref. [13], we discussed the predictions of the most general 2-body quark Hamil-
tonian for the spin-flavor structure of the negative parityL = 1 excited baryons, without making
any assumptions about the orbital hadronic wave functions.We derive two universal correlations
among masses and mixing angles, which constrain the mixing angles, and can test for the pres-
ence of 3-body quark interactions. In addition, we derive constraints on the spin-flavor structure
of the quark forces from the observed spectrum, and concludethat the gluon-exchange model is
disfavored by data, independently on any assumptions aboutthe hadronic wave functions.
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