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1. Introduction

As pointed out in many talks in this conference one of the major problems of Ghihe
determination of the LECs. This is an issue that has to be solved if we wamiglete predictive
theory and to check its convergence. Furthermore, since the LECsdetive dynamics of the
underlying theory QCD, they can in principle provide us with more informatioit as well.

On the other hand, chiral symmetry imposes no constraints on the values obupéng
constants, thus we need to perform a fit for their determination. This is errdifficult task for
different reasons.

First of all, going to higher order in the chiral expansion the number offieddent operators
allowed by the symmetries in the Lagrangians, and therefore the numbeuolirgp constants
to estimate, increases. E.g.,$9(3) ChPT up to NNLO, the following LECs appear: 2 i#,
(Fo,Bo), 10+ 2in %, (Lijs,His) and 90+ 4 in % (Cj)s.

Moreover these constants are strongly correlated. As a matter of faetatiordeip® typically
manyL;s contribute to particular processes, their determination entangles differeresses. As
a result, an estimate of an ordgft LEC used in one process where laris determined sneaks in
the determination of the othéss and possibly of th€;s in the other processes. The solution, a
full comprehensive analysis of all processes at the same time, is a mag@takidg which has not
been done [2].

Finally, so far we don’t have enough data to perform a complete fit of @ttmstants, even if
in this regard other kinds of results, such as dispersive and lattice daoaslaare helpful.

The solution which has been mainly used so far is to perform the fit of.theelying on
estimates of the values of tigs by simple resonance saturation, see the discussion in [1, 3], but
now we have at our disposal a lot of processes calculated up to NNk 2% for a review) and
new measurements of the obsevables involved, thus it is time to collect all thidddue and
perform a new global fit.

As said above, one of the main problems to overcome when performing theHg iarge
number of unknown constants appearing at NNLO. For this purposeaweslboked for relations
between observables that do not involve @he

If O is an observable, then ChPT allows us to write it is as a sum of terms of iingeas
importance in the chiral expansion:

0=094+0%4+00. (1.1)
The p® part can be split as

0(6) = OCi (treeleve) + OLi (oneloop + OFo(tonoops)~ (1-2)

We found relations between observables such that the first contribtiieonly one where th€
dependence shows up, cancels out. Using these relations we can stgimgvabout theC;s and
perform the fit of the;s at NNLO! Moreover we can check how large the loop contributions are
and thus test ChPT convergence.

IHowever often the tree level contribution from thes also cancels.
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So far we considered the following processes and quantiigsind K scatteringKs (K —
nirtev), scalar form factor$Fg/ K(t)), meson masses, meson decay constdipg ), vector form

factors(F"/K) andn — . We found many relations, but not all of them are equally useful for
the fit purpose: some of them involve not yet well known observablésame others are long and
complicated expressions. Hence in the following we only quote the most nelewas. All results
presented are preliminary. We discuss now the relations and then a finstical check of some
of them.

2. Relations between Observables

2.1 mscattering

The it scattering amplitude can be written as a funct#gs,t,u) which is symmetric in the
last two arguments:

A(TPTP — 1tm?) = 33P5%9A(s t,u) + 3°98P9A(L, u,s) + 6295 CA(ULL, S) (2.1)
wheres; t,u are the usual Mandelstam variables. The isospin amplitlitiest) (1 = 0,1,2) are

TOst) = 3A(s,t,u) +A(t,u,8) +A(u,st),
THst) = Astu)—AUst),  T(st)=A(t,u,s)+A(US!), (2.2)

and are expanded in partial waves

T'(st) = 32”2(2€+1)P5(C056>tg|(3), (2.3)

wheret andu have been written as= —%(s— 4m2)(1—cosh), u= —%(s— 4me)(1+cosB). Near
threshold the; are further expanded in terms of the threshold parameters

() =o' (al + bl + 0(a) ¢ = (s anf), (2.9

wherea), bl ... are the scattering lengths, slopes, We studied only those observables where a
dependence on th@s shows up. Using+t +u = 4m?2 we can write the amplitude to ordgf as

A(s,t,u) = by + bys+ bss? + by (t — u)? + bss® + bgs(t — u)? + non polynomial part ~ (2.5)

The tree level Feynman diagrams give polynomial contribution&(gt,u) which must be ex-
pressible in terms dby,...,bs. As a consequence, we obtain the following five relations among
the scattering lengths:

301 + 2585, = 10[af] . , (2.6)

(505 — 20] . +9 [2b1 3aj]. = 3[585— 28], (2.7)
[-5b5+205] . = 21 (&3], (2.8)

20[b3 —b3—a5+af], = [Sal +b5]c (2.9)
—10[bj— 1803+ 18a3] . = [2b+18a]] , (2.10)
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where the symbo].. .}Q indicates that these relations are valid for the parts depending dighe
only. In fact, since these relations hold for every contribution to the paoiyalopart, they are valid
at NLO too and both fon; = 2, 3. Therefore they do not get contributions from the at NLO,
but only at NNLO thanks to the non polynomial part of Eq. (2.5).

2.2 1K scattering

The 1K scattering amplitude has amplitudeY(s,t,u) in the isospin channels= 1/2,3/2.
As for T scattering, it is possible to define scattering lengthd). So we introduce the partial
wave expansion of the isospin amplitudes

+o0

T'(st,u) = 16n[2)(2€+1)Pg(c036)t}(s), (2.11)

and we expand the(s) near threshold:

1 S M + My)? Mk — My)?
t(9) = vac (e bl o) i (1- ML) (1 M),
andt = —2¢2%, (1—cosf), u= —s—t+2mg +2mZ. Again we studied only those observables
where a dependence on g shows up.
Itis also customary to introduce the crossing symmetric and antisymmetric amplittides, u)
which can be expanded aroung: 0, s= u usingv = (s—u)/(4mk) (subthreshold expansion):
THstu) = § it T (stu)=

0 }

ct'vath (2.12)

i 0

™M e
™M e

In cy; andc;, the same combinatiorC, + 2C3 + 2C4 appears [4], thus

16mk [Con) ¢, =3[0, - (2.13)

Eq. (2.13) leads to two relations between the scattering lengths which holdrotilg p® case;
there is a dependence bgandLs from the NLO contribution.

2.3 mmrand niK scattering

Considering thetrrand K system together we get five more relations due to the identities

3 1, 1
[bse, = [0, + I [C20lc, - Ibele = ame [C20)¢, + 16me [ch]e, (219

wherec;; (cﬁ) are expressed in units nﬁ”j“(m%i”j). These relations and those in the previous
subsection are rather long in terms of the threshold parameters.

2.4 Ky
The decaK™ (p) — mr (p1) ™ (p2)et (pr)v(py) is given by the amplitude [5]

Gr

=7

Vii(py) Vi (1= y)v(pe) (VH — AF) (2.15)
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whereVH and A* are parametrized in terms of four form factoks;: G, H andR (but theR-form
factor is negligible in decays with an electron in the final state). Using partie¢wxpansion and
neglectingd wave terms one obtains [6]:

Fs = fs+ fi? + fLo* + flse/4mE+... (Swave), (2.16)

and similar expressions for the other partial waves and form factoree $i6s;) is the invariant
mass of dipion (dilepton) system, agi= s;/(4m%) — 1. We found one relation involving:

2] P42 — 6l @17
This translates into a relation betwerrm, K scattering lengths anf{'.
2.5 Scalar Form Factorsand M asses
The scalar form factors for the pions and the kaons are defined as
Fi*™2(t) = (Ma(p) G (M1 (@), (2.18)
wheret = p—q, i, j = u,d,s are flavour indices antll; denotes a meson state with the indicated

momentum. Due to isospin symmetry not all of them are independent, theredarensider only

FSn: ZFHOHO FSs Fnonov FSs FKOKOa
FE = RO+ RS =R LRIGC, RIK=FKT. (2.19)

There are two relations betwe&g(t = 0) and the ChPT expansion of the mashis M2:

2Bo [M2] o

= S {2 — ) [FEYO)]g, + M FE(O)lg }
280 [MZ], = 3 { (2% 1) [FE(0)] o+ [FE(0)] }- (2.20)

One could arrive to the same conclusion using the Feynman-Hellmann Tinésee e.g. [7] or [8])
which implies forg = u,d,sandM = m,K

o,

FA(t=0) = (M|GUM) = =M 2.21
6t =0) = (MIauM) = Z° (2.21)

On the other hand the ChPT expansion leads to
ZC. 3= f(my, my,m), (2.22)

that is an homogeneous function of order three Thanks to the EuIerrél'r‘ne{i\/l,%]Q can be

written in terms of its derivativef (x) = 3 isn, ax, "% xeR"). These are exactly the relations in
Eq. (2.20). Something similar holds for tip& expression but with a factor/2 instead of 13.
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2.6 Other Relations

Here we present just a general overview of the other relations found:

e Decay constants, Masses and Scalar Form Factors : two more relations

e \ector Form Factors: no new non trivial relation

e n — 31T no relations

Considering all together Scalar Form Factors, Masses, Decay Ctsstarscattering and
niK scattering : one extra (difficult) relation, essentially the equivalent ofefaion in [9].
Another relation betweeK, form factors £, Gs, G5, GZ), K and rtrt coefficients, and
scalar form factors.

3. Numerical Analysis

In this section we present first results of a numerical analysis of the metatippearing in
Egs. (2.13) and (2.17). For both of them we evaluated numerically thearglguantities (i.eT*
for K scattering andFs for Ky4) setting for thel;s the values of fit 10 and th@s= 0. Then we
performed a fit to the expressions in Egs. (2.12) and (2.16) respigctiVhis is the part of the
guantities that does not come from Beand which needs to be subtracted from the experimental
results to test the relations. The experimental part is evaluated from thershigpresults foriK
scattering [10] and experiment f&4 [11, 12]. We found that the relations are not well satisfied.
The reason for these discrepancies is still under investigation.

3.1 7K scattering

The fit of the subthreshold expansion (2.12) to the ChPT NNLO resulbisisin Figs. 1 and 2
(notice there are three surfaces in each plot) and the resulting to bectebtitareshold parameters
are shown in Tabs. 1 and 2. Using the results of Tab. 2 we get for thedotiected part of the

¥ -0.05
0.05

Lo t(Gev?)

s-u (Gevz)

-0:050'05 s-u (Gevz)

.0.059:05

Figure 1: T* as a function ot ands—u. Red
points are numerics generated witjs=fit10 and
Cis= 0. Fitting is with y; 3 ; ¢ft'v2I*1. Blue sur-
face:i+2j <5. Green surfacd:+2j < 4

Figure 2. T~ as a function ot ands—u. Red
points are numerics generated witfs=fit10 and
Gis= 0. Fitting is with y; 3 ; ¢ft'v2I*1. Blue sur-
face:i+2j <5. Green surfacd:+2j < 4

relation (2.13):

né(l.Z?S) . (3.1)
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Subthreshold parametefS $= 0, Ljs=fit10) Subthreshold parameter€ic= 0, Ljs=fit10)
10cf, | —0.709 | cj, 1.101 Coo 8.398 | 10c, 0.959
10°ch, | —0.485| cf; 3.467 10%c,, | 0.791 | cy; 0.426
10°c}, | 0.186 | cf; —0.131 10%c;, | —1.04 | 10%cy; —6.04
10%cj, | 0.250 | 1C°cy, 0.824
Table 1: Values ofc;t (in unit of m2 )y from fit ~ Table 2: Values ofc;; (in units of mey "4t from
with i +2j <5 (see F|gure 1) fitwithi+2j <5 (see Figure 2).
The dispersive analysis [10] gives the experimental results for bodls sit(2.13)
FG I:6
1.70+0.02 19+0.18 3.2
m 5 ( ) P 5 ( ) 3.2)
The difference (3.2}(3.1) is what should satisfy (2.13):
2
0.12+0.02=0.6+0.18 (3.3)

As you see in (3.3) the right and the left hand side are not in agreementialfty it is the same
discrepancy found between ChPT [4],, = 0.013, and dispersive results [16], = 0.0085+
0.0001 noticed before [4]. This is related to the conflictigleterminations in [13].

3.2 K4

We now do the same analysis fey. As shown in Figure 3 we performed two fits with different
degree polynomials. The higher degree fits better the dependerszewn thought in the region
probed experimentally in [1](]4%21 < 0.4 andg? < 1) the lower degree polynomial fits wells and
fe turns out to be in agreement between the two fits. We quote here the restits Bdue fit. The
uncertainties are a measure on how much the two fits differ:

Figure3: Fsasa function OP andq Red point are numerics generated vtith:fitlo andC. O Green
surface: fit withfs(1+ £ q + fSq + f 4m2) Blue surface: fit withfs(1+ - £ q + fsq + fsq + fs 4m2)

f/ f// f/
fs =5.92440.002 f—s = 0.075+0.005 f—s = —0.03+0.009 f—e =0.038+0.002 (3.4)
S S S
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Using the value (3.4) fof{, Tab. 1 forc}; we get for the to be subtracted part for the relation (2.17)
—0.049+0.002 <= 0.0521+0.0006. (3.5)

The experimental results of [11] (value féy = 5.77 from [12]) and [10] give the experimental
part:
—0.14+0.04 < 0.094+0.02. (3.6)

The difference (3.6}(3.5) is:
—0.08+0.04= 0.04+0.02. 3.7)

Again a discrepancy shows up: now the two sides of the relation (2.1@)dposite sign.

4. Conclusions

We have presented here the first results of search for relations aDNINChPT that are inde-
pendent of the ordes® LECs. We found several previously unknown relations and haveptes
preliminary numerical results for two of them.
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