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Predictions of chiral perturbation theory for
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We compute the Compton scattering off the nucleons in the framework of manifestly covariant
baryon chiral perturbation theory (BχPT). The results for observables differ substantially from
the corresponding calculations in heavy-baryon chiral perturbation theory (HBχPT), most ap-
preciably in the forward kinematics. We verify that the covariant p3 result fulfills the forward-
Compton-scattering sum rules. We also explore the effect of the ∆(1232) resonance at order
p4/∆ , with ∆ ≈ 300 MeV, the resonance excitation energy. We find that the substantial effect of
the ∆-excitation on the nucleon polarizabilities can naturally be accommodated in the manifestly
covariant calculation.

International Workshop on Effective Field Theories: from the pion to the upsilon
2-6 February 2009
Valencia, Spain

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:lensky@ect.it


P
o
S
(
E
F
T
0
9
)
0
3
3

Predictions of chiral perturbation theory for Compton scattering off protons Vadim LENSKY

1. Introduction

Compton scattering off nucleons allows to study the structure and the e.m. properties of the
nucleon. At very low energies, the process depends on the static e.m. moments of nucleon, the
charge and magnetic moment [1]. At larger energies (around 100 MeV and above), the effects of
the nucleon structure can be detected [2, 3, 4, 5, 6, 7, 8]. For instance, these effects show up in the
values of nucleon polarizabilities — see the PDG column of Table 1.

More insights come from chiral perturbation theory (χPT), an effective theory of the low-
energy strong interaction [9, 10]. The leading-order χPT result for the nucleon polarizabilities
is a prediction — the low-energy constants (LECs) start to contribute at the next order. The first
calculation of polarizabilities in χPT [11] at leading order yields the values shown in the BχPT
O(p3) column of Table 1. This calculation was done in manifestly Lorentz-covariant baryon χPT
(BχPT), to distinguish it from the heavy-baryon χPT (HBχPT), which was introduced [15] in order
to cure the chiral power counting problems that BχPT had apparently had [16]. Incidentally, the
HBχPT result agrees with experiment much better, see Table 1. More detailed analyses of Compton
scattering in HBχPT followed [12, 17, 18]. However, it was shown more recently [19, 20] that

HBχPT BχPT PDG
O(p3) [12] O(ε3) [13] O(p3) [11] O(p4/∆) [14]

α(p) 12.2 20.8 6.8 10.8 12.0±0.6
β (p) 1.22 14.7 −1.8 2.9 1.9±0.5

Table 1: The electric (α) and magnetic (β ) polarizabilities of the proton in units of 10−4 fm3. The last
column quotes the PDG compilation of experimental results, while the first two represent the predictions of
the HBχPT and BχPT, respectively.

BχPT does not have a problem with power counting per se. It was also pointed out [21] that the
difference between BχPT and HBχPT results can be large due to the presence of physical cuts and
other non-analytic structures. Moreover, HBχPT is incompatible with the sum rules [22, 23, 24].
Finally, the effect of the ∆ excitation in Compton scattering cannot be accommodated in the HB
framework in a natural way [25, 26] (see also the HBχPT column of Table 1). These observations
make a strong case for adopting the BχPT formalism in favor of the heavy-baryon one. Here we
present the results of a calculation of Compton scattering in BχPT to orders p3 and p4/∆ [27].

2. Chiral loops and Lagrangians

Up to O(p3), the χPT expansion for the Compton amplitude contains the Born graphs, the
Wess-Zumino-Witten anomaly (see, e.g., Ref. [26]), and the loop graphs shown in Fig. 1. To
calculate these loops, we consider the leading-order chiral Lagrangian for the nucleon:

L
(1)

N = N (iD/ −MN +gA a/γ5)N , (2.1)

where N denotes the isodoublet Dirac field of the nucleon, MN is the nucleon mass and gA is
the axial-coupling constant, and the chiral covariant derivative is given by DµN = ∂µN + ivµN ,
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whereas the vector and axial-vector fields above are defined in terms of the pion field, πa(x), as

vµ ≡ 1
2 τava

µ(x) =
1
2i

(
u∂µu† +u†∂µu

)
, aµ ≡ 1

2 τaaa
µ(x) =

1
2i

(
u† ∂µu−u∂µu†) , (2.2)

with u = exp(iπaτa/2 f ), and f the pion decay constant. Then, we apply a redefinition of the
nucleon field, N → ξ N, where ξ has the form:

ξ = exp
(

igA πaτa

2 f
γ5

)
. (2.3)

For the one-loop contributions to Compton scattering it is sufficient to expand up to the second
order in the pion field. After the expansion, the redefined Lagrangian takes the following form:

L ′(1)
N = N

(
i∂/−MN− i

gA

f
MNτaπaγ5 +

g2
A

2 f 2 MNπ2 − (gA −1)2

4 f 2 τaεabcπb∂/πc
)

N +O(π3) . (2.4)

Finally, one gets the set of diagrams in Fig. 1 with the couplings from Eq. (2.4) instead of the usual
set [11]. However, the two sets of one-loop diagrams give identical expressions for the Compton
amplitude. This fact also explains why the one-loop result for polarizabilities in the linear sigma
model with heavy σ -meson [28] is exactly the same as in BχPT at O(p3) [11].

The ∆ excitation starts to contribute at order p4/∆ , where ∆ = M∆ −MN ≈ 0.3 GeV. The
relevant diagrams are shown in Fig. 2. The ∆ Born contribution is calculated in the same way as in
Ref. [26], except that we use the values of the γN → ∆ couplings (gM = 2.95 and gE = −1.0) from
the pion-photoproduction analyses of Refs. [31, 32], and also include the corresponding crossed
graph. We use hA = 2.85, corresponding to the ∆ → πN decay width of 115 MeV.

The one-particle-reducible graphs in Figs. 1 and 2 contribute to the nucleon mass, field, charge,
and magnetic moment renormalization. We adopt the on-mass-shell renormalization scheme, and
use the following values of the parameters: e2/4π = 1/137, gA = 1.267, f = fπ = 0.0924 GeV,
mπ = 0.139 GeV, MN = 0.9383 GeV, κN = 1.79 for the proton.

(a) (b) (c)

(d)

(g)

(e)

(h)

(f)

(i)

Figure 1: The loop graphs evaluated in this work. Graphs obtained from these by crossing and time-reversal
are not shown, but are evaluated too.

3. Consistency with sum rules

The amplitude of forward Compton scattering can be related to an integral over energy of
the photoabsorption cross-section, which in combination with the low-energy expansion yields a
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Figure 2: The graphs with ∆(1232) that contribute at order p4/∆ . Graphs obtained from these by crossing
are not shown, but are calculated as well.

number of model-independent sum rules. A famous example is the Baldin sum rule:

α +β =
1

2π2

∞∫
0

dω
σT (ω)
ω2 − i0

(3.1)

that relates the sum of polarizabilities to an integral of the total photoabsorption cross-section σT .
In general, the forward Compton-scattering amplitude can be decomposed into two scalar

functions of single variable:

Tf i(ω) = ε⃗ ′∗ · ε⃗ f (ω)+ i⃗σ · (⃗ε ′∗× ε⃗ )ω g(ω), (3.2)

where ε⃗ ′, ε⃗ are the polarization vectors of the initial and final photons, respectively, and σ⃗ are the
Pauli spin matrices. Using analyticity and unitarity, one can write down the following sum rules:

f (ω)= f (0)+
ω2

2π2

∞∫
0

dω ′ σT (ω ′)
ω ′2 −ω2 − i0

, g(ω)=
1

4π2

∞∫
0

dω ′ ω ′ σ1/2(ω ′)−σ3/2(ω ′)
ω ′2 −ω2 − i0

, (3.3)

where σλ is the doubly-polarized photoabsorption cross-section, with λ being the helicity of the
initial photon-nucleon state. We showed that the loop contributions in Fig. 1 fulfill the sum rules
Eq. (3.3). From the sum rules, one can see that at O(p3), chiral symmetry is not relevant for the
forward Compton amplitude. The graphs (h) and (i) in Fig. 1 take the role of chiral symmetry. In
the forward angles these graphs vanish, but play an important role in the backward angles. Without
them the value of α −β would diverge as 1/m2

π in the chiral limit (instead of 1/mπ as it should).
Thus, chiral symmetry plays a more prominent role in the backward Compton scattering.

The results for the polarizabilities are in worse agreement with experiment than the HBχPT p3

result (see Table 1). This, in fact, opens a room for the ∆(1232) contributions. The ∆(1232) plays an
important role in nucleon polarizabilities, as can be seen from the Baldin sum rule and the fact that
the photoabsorption cross-section is dominated, at lower energies, by the ∆ resonance. In contrast,
the HBχPT p3 value for α +β saturates the sum rule, leaving no room for other contributions.

4. Results for observables

In Fig. 3, we show the unpolarized differential cross-section of the γ p → γ p process as a
function of the scattering angle in center-of-mass system, with the incident photon energy fixed at
just below the pion-production threshold. The major differences between the HBχPT and BχPT
p3 calculations arise at forward angles. This is because at low energies the p3 contribution to the
cross-section at forward (and backward) angles is determined by the p3 contribution to α +β (and

4



P
o
S
(
E
F
T
0
9
)
0
3
3

Predictions of chiral perturbation theory for Compton scattering off protons Vadim LENSKY

α − β ). The sum of polarizabilities differs between the two calculations much more than their
difference, and this fact reflects itself in the cross-section.

The red solid line with an error band in Fig. 3 shows the result of adding the ∆ contribution to
the covariant p3 result. The ∆ contribution in BχPT is compatible with both photoproduction and
Compton scattering data, which is further demonstrated in Fig. 4, where the γ p → γ p cross-section
is plotted as a function of photon energies at fixed angles (in the lab system). The HBχPT result is
omitted here, but can be found in Ref. [18]. The results for the proton polarizabilities, complete up
to O(p4/∆), are displayed in Table 1.
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Figure 3: (Color online) Angular dependence of the γ p→ γ p differential cross-section in the center-of-mass
system for fixed photon-beam energy, E(lab)

γ = 149 MeV. Data points are from SAL [4] — filled squares,
and MAMI [6] — filled circles. The curves are: Klein-Nishina — dotted, Born graphs and WZW-anomaly
— green dashed, adding the HBχPT — violet dash-dotted, adding the BχPT — blue solid. The result of
adding the ∆-excitation contribution to the BχPT p3 is shown by the red solid line with a band.
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Figure 4: (Color online) Energy dependence of the γ p → γ p differential cross-section in the laboratory
frame for fixed values of the scattering angle. Data: Illinois [2] — open squares, MAMI [3] — filled
triangles, SAL [5] — open diamonds, and MAMI [6] — filled circles. The curves are as in Fig. 3.

5. Conclusion

We have studied the nucleon Compton scattering in the framework of BχPT at orders p3 and
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p4/∆ . The covariant p3 result fulfills the forward-Compton-scattering sum rules. Chiral symmetry
has no effect on the forward scattering but plays an important role at the backward scattering. For
the γ p → γ p cross sections we find that the difference between the HBχPT and BχPT results
can indeed be unnaturally large, especially in the forward kinematics. We argue that higher-order
effects of the ∆(1232) excitation can more naturally be accommodated in the BχPT calculation.
This is due to partial cancellation of the relativistic and ∆-excitation effects which is explicit in the
covariant calculation. In contrast to the HBχPT approach, in BχPT the effect of ∆(1232) appears
to be compatible both with the Compton scattering and pion photoproduction data.
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