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ππ scattering lengths at O(p6): resonance estimates
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In a previous paper, some deviations were found in theO(p6) low-energy constants that con-

tribute to theππ–scattering lengths. This work completes the study of all the relevant couplings

(r1, ...r6, rS2). We also perform a reanalysis of the hadronical inputs usedfor the estimation (res-

onance masses, widths...), checking the impact of the inputuncertainties on the determinations

of the chiral couplings and the scattering lengthsaI
J. A good agreement is found with respect

to former works, though our detailed analysis produces a more solid estimate of these couplings

and slightly larger errors. The effect in the final values of the aI
J is negligible after combining

them with the other uncertainties, being the previous scattering length determinations sound and

reliable. Nevertheless, the uncertainties derived here for theO(p6) contributions to the scatter-

ing lengths point out the limitation on further improvements unless the precision of theO(p6)

low-energy couplings is properly increased.
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1. Introduction

This talk presents the culmination [1] of a former work [2], where some of theO(p6) Chiral
Perturbation Theory low energy constants (r2, ... r6) that describe theππ–scattering were calcu-
lated. Some shifts were found with respect to former estimates [3], inducing slight modifications
on the corresponding predictions for the scattering lengths aI

J and effective rangesbI
J [3, 4]. These

constants provide the partial wave amplitudes for isospinI and angular momentumJ near thresh-
old T I

J (s) = k2J
(

aI
J + bI

J k2 + ...
)
, with k =

√
s/4−m2

π the pion three-momentum in the dipion
rest-frame [3]. However, our previous article [2] lacked ofrevised predictions for ther1 low-
energy constant (LEC), which also enters into theπ+(p1)π−(p2) → π0(p3)π0(p4) amplitude at
O(P6) [3]:

A(s, t,u)|r i =
m4

πs
F6 (r2−2rF) +

m2
πs2

F6 r3 +
m2

π(t −u)2

F6 r4 +
s3

F6 r5 +
s(t −u)2

F6 r6 +
m6

π
F6 (r1 +2rF) .

Likewise, the dispersive method considered by Colangeloet al. [4] required theO(p6) LEC rS2

instead ofr5 andr6. Here we complete the study of these last LECs and perform a full reanalysis
of the different hadronic inputs and their uncertainties.

2. Resonance estimates of O(p6) LECs

• Set A:

This is the group of estimates commonly employed in nowadayscalculations [3, 5]. The
χPT couplings are assumed to be determined by the resonance exchanges provided by the
phenomenological lagrangian

L =
F2

4
〈uµ uµ + χ+ 〉+ 1

2
〈∇µS∇µS〉− 1

2
M2

S〈SS〉+cd〈Suµ uµ 〉+cm〈Sχ+ 〉

− 1
4
〈V̂µνV̂µν 〉+ 1

2
M2

V〈V̂µV̂µ 〉 − igV

2
√

2
〈V̂µν [uµ ,uν ]〉+ fχ〈V̂µ [uµ ,χ−]〉 , (2.1)

where〈 ...〉 stands for trace in flavour space,SandV̂µ account respectively for the scalar and
vector multiplets. The tensoruµ contains the chiral pseudo-Goldstone andχ± is, in addition,
proportional to the light quark masses. Their precise definitions can be found in Refs. [3, 5,
6]. From the comparison of theρ → ππ andK∗ → Kπ decays and other processes, Ref. [3]
obtained the set of parameters

MV = 770MeV, gV = 0.09, fχ = −0.03,

MS = 983MeV, cm = 42MeV, cd = 32MeV. (2.2)

Taking this inputs and the phenomenological lagrangian (2.1), Ref. [3] provided
rA
1 = −0.6×10−4 , rA

2 = 1.3×10−4 , rA
3 = −1.7×10−4 , (2.3)

rA
4 = −1.0×10−4 , rA

5 = 1.1×10−4 , rA
6 = 0.3×10−4 , rA

S2
= −0.3×10−4 .

• Set B:

However, some scalar meson contributions were found to be missing in previous estimates
of the O(p6) LECs [3, 4, 5]. The couplingsr2, ... r6 were fully calculated at largeNC [2],
being expressed in terms of the ratios

ΓR

M3
R

=
ΓR

M
3
R

[
1+ αR

m2
π

M
2
R

+ γR
m4

π

M
4
R

+O(m6
π)

]
,

ΓR

M5
R

=
ΓR

M
5
R

[
1+ βR

m2
π

M
2
R

+O(m4
π)

]
,(2.4)
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whereMR andΓR stand for the chiral limit ofMR andΓR, respectively. The constantsαR,
βR, γR are quark mass independent and rule themπ corrections in the ratios. The resonance
masses and widths were computed at largeNC by means of the resonance lagrangian (2.1).
Using exactly the same inputs (2.2) of set A, we found thatr5 andr6 remained unchanged,
r3 andr4 varied slightly (rB

3 = 0.9×10−4, rB
4 = −1.9×10−4) andr2 suffered a big variation

(rB
2 = 18×10−4) [1, 2].

• Set C:
As relevant variations were found in some of ther i , in addition to performing the full large–
NC estimate (without dropping any possible resonance contribution), a detailed analysis of
the experimental inputs and their uncertainties was also inorder. It was found that although
the vector sector is quite under control, our knowledge on the scalar resonance properties is
rather poor. This work is devoted to this analysis.

3. Phenomenology of the resonance parameters

3.1 Mass splitting up to O(m2
P)

In the large–NC limit, the mass splitting of the resonance multiplets can bedescribed at leading
order by one single operatoreR

m [7]

− M
2
R

2
〈RR〉 + eR

m〈RRχ+ 〉 , (3.1)

which leads at largeNC to the mass eigenstates

M2
I=1 = M

2
R −4eR

mm2
π + O(m4

P) = M(ūu+d̄d)
I=0 ,

M2
I= 1

2
= M

2
R −4eR

mm2
K + O(m4

P) ,

M(s̄s) 2
I=0 = M

2
R −4eR

m (2m2
K −m2

π) + O(m4
P) . (3.2)

The combined study of theρ(770), K∗(892) andφ(1020) masses leads to the values [1]

MV = 764.3±1.1MeV, eV
m = −0.228±0.015. (3.3)

In the case of the scalars, the lightestI = 1 resonance is identified with thea0(980):
MI=1 = 984.7±1.2 MeV [8]. In order to avoid the problem of the mixing of iso-singlet scalars, the
analysis is performed with theI = 1/2 state. The broadκ(800) seems to be a possible candidate
although the first clearI = 1/2 scalar resonance signal is provided by theK∗

0(1430) [8]. Hence,
we take the conservative estimateMI=1/2 = 1050±400 MeV, which ranges from theκ up to the
K∗

0(1430) mass. This leads then to the values

MS = 980±40MeV, eS
m = −0.1±0.9. (3.4)

3.2 The splitting of the vector resonance decay width up to O(m2
P)

The vector decay width into two light pseudo-scalars,V → φ1φ2, shows the general structure

ΓV→φ1φ2 = CV12 × M n
V ρ3

V12

48π F2
1 F2

2

λ 2
Vππ

[
1+ εV

m2
1 +m2

2

2M
2
V

+ O(m4
P)

]2

, (3.5)
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with the phase-space factorρV12 = M−2
V

√
(M2

V − (m1+m2)2)(M2
V − (m1−m2)2). TheFi are the

physical decay constants for theφi pseudo-Goldstones (Fπ ≃ 92.4 MeV andFK ≃ 113 MeV) and
they appear due to the large–NC wave function renormalization of the light pseudo-scalars[2, 9].
MV andmi correspond, respectively, to the physical vector and pseudo-scalar mass. Depending
on the channel, one has the Clebsch-GordanCρππ = 1, CK∗Kπ = 3/4 andCφKK = 1. TheVφ1φ2

coupling and the mass scalingMn
V depend on the considered lagrangian realization, either Proca

fourvector (n=5) or Antisymmetric tensor formalism (n=3) [6, 5, 11]. The combination of the
experimentalK∗ andρ widths yields [1]:

λVππ = gV = 0.0846±0.0008, εV = 0.01±0.09 , ( Proca [5, 11] ) , (3.6)

λVππ = GV = 63.9±0.6MeV, εV = 0.82±0.10, ( Antisym. [6, 11] ) .

3.3 The decay width for the scalar resonance

In the case of the scalar mesons the current knowledge nowadays is still very poor. We had
then to rely on the phenomenological lagrangian (2.1) for the description of thea0(980) → πη
width [1, 6], and on the theoretical scalar form-factor constraint 4cdcm = F2 [13]:

cd = 26±7MeV, cm = 80±21MeV, (3.7)

where their large errors stems essentially from the wide range we considered for thea0(980) partial
width, Γa0→πη = 75±25 MeV [1].

3.4 Chiral corrections to Fπ

At large–NC, the wave-function renormalization of theπ field is related to the decay constant
in the wayFπ = F Z−1/2

π [9, 10]. Them2
π corrections toFπ can be parametrized in the form

Fπ = F

[
1 + δF(2)

m2
π

M
2
S

+ δF(4)
m4

π

M
4
S

+ O(m6
π)

]
. (3.8)

The scalar lagrangian (2.1), the mass splitting (3.2) and the former inputs produce the predictions

δF(2) =
4cdcm

F2 = 1, δF(4) =
8cdcm

F2

(
3cdcm

F2 − 4c2
m

F2

)
+

16cdcmeS
m

F2 = −5±5. (3.9)

3.5 Next-to-next-to-leading order chiral corrections to MV , ΓV and ΓS

The next-to-next-to-leading order corrections (NNLO) to the vector mass are also needed in
order to extract the LECr2 [1]. At large NC, the quark mass corrections are given at NNLO by
M2

I=1 = M
2
R−4eR

mm2
π −4ẽR

mm4
π/M

2
R. Demanding that the NNLO terms never overcome the NLO

corrections in the vector multiplet sets the range
∣∣ẽV

m

∣∣ ≤ M
2
V

2m2
K −m2

π
|eV

m| ≃ 0.3 [1].

The determination ofr2 also requires the NNLO chiral correctionsε̃R to the resonance widths

Γρ→ππ =
M n

ρ ρ3
ρππ

48π F4
π

λ 2
Vππ

[
1+ εV

m2
π

M
2
V

+ ε̃V
m4

π

M
4
V

+ O(m6
π)

]2

,

Γσ→ππ =
3M3

σ ρσππ

16πF4
π

c2
d

[
1+ εS

m2
π

M
2
S

+ ε̃S
m4

π

M
4
S

+O(m6
π)

]2

. (3.10)
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The phenomenological lagrangian (2.1) [6, 5] yields the predictions

ε̃V = εV

[
8cm(cd −cm)

F2

M
2
V

M
2
S

+4eV
m

]
=

{
−0.03±0.18, (Proca)
−1.6±0.9, (Antisym.)

ε̃S =
16c2

m(cd −cm)

cdF2 +
8(cm−cd)e

S
m

cd
= −7±12. (3.11)

4. Low-energy constant determination at O(p6)

Based on the partial-wave dispersion relations developed in Refs. [2, 12], it is possible to
extract the large–NC values ofr2 , ... r6 from theI = 1 vector andI = 0 scalar(ūu+ d̄d) width and
mass ratiosΓR/M3

R andΓR/M5
R: the couplingsr5 andr6 are determined by theΓR/M5

R ratio in the
chiral limit; r3 andr4 also require its firstm2

π correctionβR; those and the NNLOm2
π contribution

to ΓR/M3
R are needed in order to obtainr2. All these LECs have been found to be dominated by

the vector resonance exchanges. TheO(p6) couplingsr1 [5] and rS2 [5] could not be computed
through the partial-wave dispersion relations in [2, 12]. They were calculated directly from the
phenomenological lagrangian (2.1):

rProca
1 = −16cdcm(8c2

d −17cdcm+12c2
m)

M
4
S

+
32(cd −cm)2F2

M
4
S

eS
m

−16g2
VF2

M
2
V

[
1+ εV +

1
4

ε2
V − 8cdcm

F2

M
2
V

M
2
S

]
, (4.1)

rS2 =
8cm(cm−cd)F

2

M
4
S

− 32c2
dc2

m

M
4
S

+
16cdcmF2

M
4
S

eS
m. (4.2)

The expression forr1 in the Antisymmetric tensor formalism is similar to (4.1) but with the second

line replaced by−16G2
VF2

M
4
V

[
1+ εV − 8cdcm

F2
M

2
V

M
2
S

+2eV
m

]
. All this leads to the values of the low-energy

constants shown in Table 1. The first error derives from the phenomenological inputs and the
second one stems from the uncertainty on the saturation scale µs wherer r

i (µs) = rNC→∞
i [1].

ND est. [14] set A [3, 5] set C (Proca) set C (Antisym.)

104 · r r
1 ±80 −0.6 −14±17±3 −20±17±3

104 · r r
2 ±40 1.3 22±16±4 7±10±4

104 · r r
3 ±20 −1.7 −3±1±3 −4±1±3

104 · r r
4 ±3 −1.0 −0.22±0.13±0.05 0.13±0.13±0.05

104 · r r
5 ±6 1.1 0.9±0.1±0.5 0.9±0.1±0.5

104 · r r
6 ±2 0.3 0.25±0.01±0.05 0.25±0.01±0.05

104 · r r
S2

±1 −0.3 1±4±1 1±4±1

Table 1: Different predictions for theO(p6) LECs r r
i (µ) for µ = 770 MeV: The first column presents the

order of magnitude estimate based on naive dimensional analysis [14]; In the set A column we show former
estimates from Refs. [3, 5]; in the last two columns, one can find the values for the present reanalysis.
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5. Scattering lengths

TheχPT expression for the scattering lengths contains atO(p6) a series of logarithmic terms
together with analyticalO(p6) contributions [3]. Although the first ones are the most compli-
cate contributions to compute, their value is neverthelessrather sound and under control. On the
other hand, the local terms are determined by theO(p6) LECsr i and, although they can be easily
computed, these couplings are badly known and their estimation is pretty cumbersome.

In Ref. [4], Colangeloet al. combined the NNLO chiral perturbation theory computation of
the scattering lengths [3] with a phenomenological dispersive representation. This allowed them
to produce one of the most precise determinations of the scattering lengths. They were expressed
in terms of some dispersive integrals, the pion quadratic scalar radius〈r2〉π

S, theO(p4) couplingℓ3

and a set ofO(p6) LECs (r1, r2, r3, r4, rS2). Following the work of Ref.[4], we extracted the part
of their scattering lengths that depended on the inputsr r

i (µ) [1, 4]:

a0
0|r i = 7m2

π
32πF2

π
C0|r i =

m6
π

32πF6
π

[5r r
1 +12r r

2 +28r r
3−28r r

4−14rS2] ,

a2
0|r i = − m2

π
16πF2

π
C2|r i =

m6
π

16πF6
π

[r r
1−4r3 +4r4 +2rS2] . (5.1)

The largest contributions to thea0
0 anda2

0 errors are found to be produced in similar terms by
r1, r2, r3 andrS2, being the impact ofr4 negligible.

Total: Ref. [4] aI
J|r i [4] aI

J|r i Set C (Proca) aI
J|r i Set C (Antisym.)

(×10−3) (×10−3) (×10−3) (×10−3)

a0
0 220±5 0.0±1.0 1.0±1.5±1.0 −1.6±1.5±1.0

10a2
0 −444±10 0.4±2.0 0±4±2 0±4±2

Table 2: The first and second columns show, respectively, the total scattering lengths and ther i contribution
to them in the dispersive method from Colangeloet al. [4], where the authors used ther i in Eq. (2.3),
Fπ = 92.4 MeV andmπ = 139.57 MeV. The last two columns show the reanalyzed quantitiesaI

J|r i (set C)
for the Proca and antisymmetric tensor formalisms for the usual scaleµ = 770 MeV. There, the first error
derives from the inputs and the second one from the saturation scale uncertainty.

6. Summary and conclusion

The combination of the Proca and antisymmetric results yields for our prediction of the LECs
the final numbers (forµ = 770 MeV),

r r
1 = (−17±20)×10−4 , r r

2 = (17±21) ×10−4 , r r
3 = (−4±4) ×10−4 ,

r r
4 = (0.0±0.3) ×10−4 , r r

5 = (0.9±0.5) ×10−4 , r r
6 = (0.25±0.05) ×10−4 ,

r r
S2

= (1±4) ×10−4 . (6.1)

Ther r
i contributions to the scattering lengths with the Colangeloet al.’s method [4] can be summa-

rized in the predictions

103 a0
0|r i = 0±3, 104a2

0|r i = 0±5. (6.2)
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Following the analysis of global uncertainties of Ref. [4] leads to the updated values
a0

0 = 0.220±0.005 and 10a2
0 = −0.444± 0.011. These values leave essentially unchanged the

previous determinationsa0
0 = 0.220±0.005 and 10a2

0 = −0.444±0.010 [4].
This calculation shows that the determinations of the scattering lengths through the dispersive

method andr i resonance saturation estimates are rather solid [4]. Our detailed analysis shows that
the error stemming from ther i does not modify the final numbers quoted in Ref. [4]. Nonetheless,
unless the the precision in theO(p6) low-energy constants is conveniently increased, it will be
difficult to carry on further relevant improvements in the scattering length determinations.
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