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1. Introduction

We shall be concerned with tlge-factor of the muon which relates its sg@rio its magnetic
momentji:

; eh _
H=gy mgv Ou=2(1+ay); (1.1)
Dirac

more precisely, with the correctiay, to the Dirac value, =2, i.e. the correction which generates
the so called anomalous magnetic moment. The present mgradl world average determination,
which is dominated by the latest BNL experiment (the E82labalration [1]), is

a;P=116 592 08063) x 10 *(0.54 ppm), (1.2)

where the origin of the error is. 46 ppm statistical and.P8 ppm systematic. This determination
assumes CPT—invariance i.a, = a,+.

The question we shall discuss w well can the Standard Model digest this precise number?
As we shall see, the precision aﬁxp is such that it is sensitive to the three couplings of the @aug
Theory which defines the Standard Model, as well as to itgfatticle content.

2. The QED Contributions (Leptons)

This is by far the dominant contribution, which is generagdiwo types of Feynman dia-
grams:

2.1 The Massless Class

This class consists of Feynman diagrams with virtual protmmly as well as diagrams with
virtual photons and fermion loops of the same flavour as thereal particle (the muon in our
case). Since the anomalous magnetic moment is a dimerssoglentity, this class of diagrams
gives rise to a contribution which is the same for the muoa,alectron and the tau anomalies.
It corresponds to the entries?) in Table 1, withn = 1,2,3,4 indicating the number of loops
involved. They are known analytically at one loop [4]; twops [5, 6]; and three loops [7]. This
is the reason why there is no error in the corresponding ntsnibeghe second column of Table 1.

At the four—loop level, there are 891 Feynman diagrams eftifpe. Some of them are already
known analytically, but in general one has to resort to nicaémethods for a complete evalua-
tion. This impressive calculation, which is systematicallirsued by Kinoshita and collaborators,
requires many technical skills and is under constant upgain particular thanks to the advances
in computing technology. The entgf® in Table 1 is the one corresponding to the most recent
published value [8], with the error due to the present nucagrincertainties.

Notice the alternating sign of the results from the contrdns of one loop to four loops,
a simple feature which is not yet priori understood. Also, the fact that the sizes of (i%)n
coefficients fom = 1,2, 3,4 remain rather small is interesting, allowing one to expieat the order
of magnitude of the five—loop contribution, from a total of @22 Feynman diagrams, is likely to

IFor recent review articles see e.qg. refs. [2] and [3].
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Table 1: QED Contributions (Leptons){ ! = 137.035 999 08451) [0.37 ppk}

CONTRIBUTION | RESULT IN POWERS OFZ | NUMERICAL VALUE IN 10 " UNITS |
% 05(%) 116 140 9729 (0.04)
aj —0.328 478 96500) (2)?
a (my/me) 1.094 258 31108) (%)*
i (my/mr) 0.000 078 06426) (£)?
A tota) 0.765 857 41027) (%)* 413 217.62 (0.01)
o 1.181 241 4600) (5)°
(M /Me)up 1.920 455 1303) ()
. a” (M /M )up —0.001 782 3348) (%)z
ail)(mél/nb7mu/mr)vp 0.000 527 66(17) (%)3
a},,; (Mg /Me) 20.947 924 8916) (2 )3
a” (M /M) 0.002 142 8369) (%)
3 (total 24,050 509 64(43) (2)° 30 141.90 (0.00)
8 a) 1,914 4(35) (%):
. 8 (My/Me)up 10839 2(41) (%)4
aﬁ:)(méx/mmu/mr)vp —0.046 2(00) (%)4
o a” (M /e 121843 1(59) (%)4
i (My/me, My /me)ig 0.0838(01) (%)
& (total) 130805 5(80) (2)* 381.33 (0.02)
(10) . a5
a;  (total estimatg 663(20) (%) 4.48 (0.14)
a0 eD) 116 584 71809 (0.14)(0.04)

be of @ (a /m)° ~ 7x 1014, This is well beyond the accuracy required to compare wighptiesent
experimental result foa,, but it will be eventually needed for an improved determomabf the
fine—structure constamt from the precision measurements of the electron anomalg.value of
a used in Table 1 is the one quoted in ref. [9].

2.2 The Massive Class

This second class is generated by Feynman diagrams withnlégaips of a different flavour to
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the one of the external muon line. Their contributioratais then a function of the ratios of lepton
masses involved. The relevant diagrams are those genésateduum polarization subgraphs (vp)
and/or by light—by-light scattering subgraphs (Ixl) inkiag electron and tau loops. The results of
their evaluation are given in Table 1. Both the two—loop dmdd—loop contributions of this class
are known analytically’. The full three—loop evaluation involving electron—loagbgraphs, by
Laporta and Remiddi [10, 11], is a remarquable achievem&he numerical errors quoted in
Table?? tab:QED for these contributions are due to the present arpatal errors in the lepton
masses [12].

At the four—loop level, only a few contributions are knowrabically. Kinoshita and his col-
laborators have, however, accomplished a full numericaluagion of this class (see ref. [13] and
references therein.). The corresponding error in Tableglei€ombined error in the lepton masses
and the present error due to the very many integrals which haen performed numerically.

The number quoted for the full five—loop QED contribution &ble 1 is the present estimate
quoted in ref. [14]. Itis likely to be improved in the nearutz.

2.3 The Mellin—Barnes Technique

There has been a recent technical development in the eealutFeynman diagrams invol-
ving mass ratios, which has already been useful in the elatuaf some higher order contributions
to a, (see refs. [15, 16]) and which seems promising for furthésutations. In these papers it is
shown how the Mellin—Barnes representation of Feynmannpeairéc integrals allows for an easy
evaluation of as many terms as wanted in the asymptotic sigranf Feynman diagrams in terms
of one and two mass ratios.

The basic idea is to express the contributioratofrom a Feynman diagram, or a class of
diagrams, as an inverse Mellin transform with respect tarhss ratios involved in the diagrams.
The remarkable property of this representation is the fattion in terms of massless moment
integrals. It is in fact this factorization which is at thdgin of the well known renormalization
group properties discussed in ref. [17], and used sincelihemany other authors (see e.g. ref. [18]
and references therein). The algebraic factorizationérMiellin-Barnes representation, however,
is more general. The standard renormalization group cangtronly apply to the evaluation of
asymptotic behaviours in terms pbwers of logarithmandconstantterms. In the Mellin—Barnes
framework, these contributions are governed by the residde¢he leading Mellin singularities.
What is new here is the extension of the renormalization graedictive power teubleading
contributionsas well. They are in fact governed by the residues of the sse@Mellin singulari-
ties (in the negative real axis, in the case of internal edadbops); or by two—dimensional residue
forms [16, 19], in the case of the Mellin singularities asatex to two mass ratios (i.e. in the the
case of both electron and tau internal loops).

As an example, we gquote a few terms of the result obtainedchtotenth—order contribution
from the string of vacuum polarization subgraphs shown qn Ei

2For an account of the successive improvements in the ei@uattthese contributions see e.g. refs. [2, 3].
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Fig.1 Diagrams with three e—loops andraloop.
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In fact, the analytic calculation in ref. [16] which leadsthas precise number, also includes terms
4
uptoo (%) log® % , Which are already smaller than the error generated by pterlenasses

in the leading order terms given in the first line in Eq. (2.1).

So far, the contributions to the muon anomaly evaluatedyéinally with this technique are:
those from the two sixth order Feynman diagrams which giee:trmtributiomﬁ") (My/Me, My /M )yp
in Table 1 [15]; those from the eighth and tenth order Feynaiagrams involving lowest order
vacuum polarization insertions of leptohs= e u, 1 in the Schwinger lowest order graph [16];
and recently, those from the eighth order contributionslinimg fourth order vacuum polarization

insertions of leptons also in the lowest order Schwingeplgfa9, 20].

3. QED Hadronic Contributions

The electromagnetic interactions of hadrons produce itorions toa,, induced by the hadronic
vacuum polarization and by the hadronic light—by—lighttsréng.
3.1 Hadronic Vacuum Polarization

All calculations of the lowest—order hadronic vacuum piaktion contribution to the muon
anomaly (see Fig. 2) are based on the spectral represenfatip

2
a',],Vp:—/ gi|mr| /o|x2X (1-x (3.1)
X +W 1 X

with the hadronic spectral functioﬁlml‘l(t) related to theone-photon €e~ annihilation cross-
section into hadronsrg — 0) as follows:

arta 1
( ){e+e —(y)—hadrong = T_l ﬂ( ) (3.2)
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Hadrons

Fig.2 Hadronic Vacuum Polarization

This contribution is dominated by the" 71~ channel; the region of the—resonance in particu-
lar [22, 23]. The history of evaluations aEVp is along one which can be traced back, e.g. inref. [2].
The most recent compilation &' e~ annihilation data used in the evaluation of the dispersive
integral in Eq. (3.1) made by Michel Davier and collaboratarhich also includes the new precise
measurements from the experiments SND and CMD-2 at Nobskjlgives the resulft:

&P = (6 873+ 42,p+ 1904+ 7ocp) X 101! [e"e —datd, (3.3)

where the erroe=19,4 refers to uncertainties in the treatment of radiative aioas in some of
theete™ experiments.
The evaluation made using thiespectral functions gives, however, a much larger contribu
tion 4:
AP = (7 015+ 48exp 118 + 8rad 7ocp) X 1071 [1—datd. (3.4)

In spite of the corrections for isospin—breaking effec®)(lthe discrepancy with the evaluation
made using" e~ data, unfortunately, still persists. Here, one has to waitHfe forthcoming results
from the high precision measurements onttiemode at BaBar using the radiative return method.
Hopefully, we shall then be able to resolve the inconsistdatween the results in Eqgs. (3.3) and
(3.4) and, therefore, improve the accuracy ofaﬁ‘é’ contribution.

There is a similar spectral representation to the one in &Ef) for the next—to—leading order
hadronic vacuum polarization [25], with the kernel [26, 2T Eq. (3.1), replaced by a two-loop
kernel, which is also known analytically [28]. A recent numal evaluation, using the same data
as for the lowest—ordes™ e~ evaluation, gives [29]

P = (~97.94 0.9+ 0.31a0) x 10711, (3.5)
A simple explanation of why this contribution turns out tormgative is given in ref. [2].

3.2 Hadronic Light—by—Light Scattering

Unlike the hadronic vacuum polarization contribution,réhis no direct experimental input for
the hadronic light-by-light scattering contributiongae shown in Fig. 3; therefore one has to rely
on theoretical approaches.

So far, the only rigorous theoretical result is the obsémathat, in the QCD largeN; limit
and to leading order in the chiral expansion, the dominantrilution comes from the Goldstone—
like neutral pion exchange which produces a charactetistieersal double logarithmic behavior
with a coefficient which can be calculated exactly [30]:

3See ref. [24] and references therein for details.
4See also ref. [24] and references therein for details.
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M
Fig.3 Hadronic Light-by—Light Scattering

2
ol (70) = (‘;’T):rgj“;;% [|n2%"1+ﬁ(ln%"1) +oW] (3.6)
whereF;; denotes the pion coupling constant in the chiral lirfit & 90 MeV). Testing this limit
was particularly useful in fixing the sign of the phenomengaal calculations of the neutral pion
exchange [31].

Although the coefficient of the ﬁﬁmp/mn) term in Eq. (3.6) is unambiguous, the coefficient
of the Inlm, /m,;) term depends on low—energy constants which are difficulxtcaet from ex-
periment [30, 32] (they require a detailed knowledge of tfle~ ete~ decay rate with inclusion
of radiative corrections). Moreover, the constant terman @.6) is not fixed by chiral symmetry
requirements, which makes the predictive power of an é¥fechiral perturbation theory approach
rather limited for our purposes. Therefore, one has to adajynamical framework which takes
into account explicitly the heavier meson degrees of freeds well. This, at the present stage of
our knowledge of QCD, necessarily brings in some model dégracy.

The most recent calculations aﬁ' in the literature [31, 33, 34, 35] are all compatible with the
QCD chiral constraints and larglimit discussed above. They all incorporate tife-exchange
contribution modulated by®y*y* form factors, correctly normalized to th@ — yy decay width.
They differ, however, in the shape of the form factors, orging in different assumptions: vector
meson dominance in a specific form of Hidden Gauge SymmetRein [33]; in the form of the
extended Nambu—Jona-Lasinio (ENJL) model in ref. [34]ydal. models in Refs. [31, 35]; and
on whether or not they satisfy the particular operator pcbdxpansion constraint discussed in
ref. [35].

The question of using on—shell form fact(ﬂ‘s,pww(rrﬁ, qf,qg) versus off—shell form factors
ﬁnoww(qg,qf,qg) has been recently raised again in ref. [36] (see also ref. |8]fact, one can
show® that these two choices are correlated with the treatmertieofémaining contributions to
the full "', In a Lagrangian formulation of the problem, like e.g. withihe ENJL—model, there
are no such ambiguities.

In order to compare different results it is convenient toasafe the hadronic light—by-light
contributions which are leading in the/N.—expansion from the non-leading ones [37]. Among
the leading contributions, the pseudoscalar meson exesanpich incorporate tha®, and to a
lesser degree the andn’ exchanges, are the dominant ones. As discussed aboveatkegeod
QCD theoretical reasons for that. In spite of the differegfindtions of the pseudoscalar meson
exchanges and the associated choices of the form factodsiusiee various model calculations,
there is a reasonable agreement among the final results. €eBo# guoted in a recent update

5Marc Knechtunpublished notes
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discussed in ref. [38] gives:
all(rr,n,n’) = (114+£13) x 10711 (3.7)

Other contributions, which are also leading in th&d—expansion, due to axial-vector exchanges
and scalar exchanges, give smaller contributions with tgoderrors, as discussed in ref. [38]:

al(1%) = (15+ 10) x 10711, (3.8)

and
a™(0") = —(7+7)x 10711 (3.9)

The subleading contributions in th¢N.—expansion are dominated by the charged pion loop.
However, because of the model dependence of the resultdtaia®when the pion loop is dressed
with hadronic interactions it is suggested in ref. [38] te tise central value of the ENJL—model
evaluation in [34], but with a larger error which also covemaccounted loops of other mesons, :

all () = —(19+19) x 10711 (3.10)

From these considerations, adding the errors in quadraareell as the small charm contri-
bution: a" (c) = 2.3+ x107!*, one gets

a" = (105+ 26) x 1071, (3.11)

as a final estimate.

4. Electroweak Contributions

The leading contribution ta,, from the Electroweak Lagrangian of the Standard Model, ori-
ginates at the one—loop level. The relevant Feynman diagy(amnthe unitary gauge) are shown in
Fig. 4.

The analytic evaluation of the overall contribution giviee tesult (see e.g. ref. [39]):

GeM | 10 1 _ 5 M2 22(2—X)
' = \7587752 3 +§(1*4SIFFQN)2*§+ <g mzz> /d
2 < Mz L 0 1_x+ “x2
W z
= 1948x 10711, (4.1)

where the weak mixing angle is defined by’ =1— M3, /M2 ~ 0.223, andGg ~ 1.166x 10>

is the Fermi constant. Notice that the contribution from khiggs boson, shown in parametric

form, is of & (f:;; :A]’Z; In Ma ) rather small for the present lower boundp.
Thea priori pOSS|b|I|ty that the two—loop electroweak corrections rbagpg in enhancement

factors due to large logarithms, like(M2/ mf,) ~ 135, has motivated a thorough theoretical effort

for their evaluation, which has been quite a remarkablecaennent.
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Fig.4 Weak interactions at the one-loop level

It is convenient to separate the two—loop electroweak daritons into two sets: those con-
taining closed fermion loops and the bosonic correctiorfsickvwe denote b)ﬁEW(z)(bos). The
latter have been evaluated using asymptotic techniquessystamatic expansion in powers of
sir? 8y, where Iog'\%V terms, IogM— terms, 4 Iog MH terms, MVZV terms, and constant terms are
kept. Using siRBy = 0.223 and 50 Ge\K My < 700 GeV results in [40, 41, 42]:

m?
2EW3) (pog) — TFJZ 9( 822+5.9)
= (—222+1.6)x 10711, (4.2)

The discussion of the fermionic corrections is more dedicddecause of thel (1) anomaly
cancellation between lepton loops and quark loops in thetrelseak theory, one cannot separate
hadronic from leptonic effects any longer in diagrams like ones shown in Fig. 5, where a VVA-
triangle with two vector currents and an axial-vector cofregpears. It is therefore appropriate to
separate the fermionic corrections into two subclasses.i©the class in Fig. 5, which we denote
by aEW(Z) (1,9). The other class is defined by the rest of the diagrams, wher& ¢pops and lepton
loops can be treated separately, which we aE\W(2> (ferm-res). This latter contribution has been
estimated to a very good approximation in ref. [40] with thsuit,

G M a

(ferm-resjy = 7 a2 1~ (—21+4), 4.3)

EW(2
2EWE)

where the error here is the one induced by diagrams with Higgsagators with an allowed Higgs
mass in the range 114 GeWMy < 250 GeV.

Concerning the contributions mﬁw(z)(l,q), it is convenient to treat the three generations
separately. The contribution from the third generation lbarcalculated in a straightforward way
using effective field theory techniques [43], because allféiimion masses in the triangle loop are
large with respect to the muon mass, with the result [43, 40]:

Fmﬁg

EW(2) _Gr
ag (t,t,b) = N

x (—30.6). (4.4)

However, as first emphasized in ref. [43], an appropriate @@ulation when the quark in the
loop of Fig. 5 is dight quarkshould take into account the dominant effects of spontasebinal-
symmetry breaking. Since this involves thhed ands quarks, it is convenient to lump together the
contributions from the first and second generations. Anuataln of these contributions, which
incorporates the QCD long—distance chiral realization, @ as well as perturbative [45] and
non—perturbative [44, 45] short—distance constraint&gihe result
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Fig.5 Two-loop electroweak diagrams gen
sponding to theu,c,s andr,t,b generations.

aEW(2> (e7 l‘l7 u7 d7 S7

erated by yg-Triangle. There are similar diagrams corre-

c) = x (—24.6+1.8). (4.5)

St
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From the theoretical point of view, this calculation hasseed surprising properties concerning the
non-anomalousomponent of the VVA—triangle [46], resulting in a new sehoh-renormalization

theoremsn perturbation theory [46, 47].

Putting together the partial two—loop results discussedalone finally obtains for the overall

electroweak contribution the value

EW _ EW(1)
=y

L OF 7l (%) [~1584(7.1)(1.8)]

152(2)(1) x 10711, (4.6)

where the first error is essentially due to the Higgs massrtaioty, while the second comes from

hadronic uncertainties in the VVA—loop

evaluation. Therallaesult shows indeed that the two—

loop correction represents a sizeable reduction of theloap—+esult by an amount of 22%. An
evaluation of the electroweak three—loop leading term& t%% g (%)zln M—ﬂ using renormal-
ization group arguments [48, 45], shows that higher ordects are negligibleq(10-12)] for the

accuracy needed at present.

5. Summary

Table 2: Standard Model Contributions

CONTRIBUTION

ResuLT IN10 T uNiTS

QED (leptons) 116 584 71@9+ 0.14+0.04,
HVP(lo)[eTe] 6 873+ 42%xp £ 19%ad% 7qQcD
HVP(ho) —97.94 0.9¢xp £ 0.31g
HLxL 105+ 26
EW 152+2+1
Total SM 116 591 75653

Table 2 collects the various Standard Model contributiana,twhich we have discussed. Notice

that the largest error at present is the

one from the loweldrdnadronic vacuum polarization

10
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contribution. Adding experimental and theoretical eriarguadrature gives a total
a;" = (116 591 75@: 53) x 10 ™, (5.1)

with an overall error slightly smaller than the one in the@exmental determination in Eq. (1.2).
The comparison between these two numbers shows an ingig6no discrepancy. However, if
instead of the HVP(lo#" e~ ] value one uses the-data determination in Eq. (3.4), the discrepancy
is then reduced to a2 o deviation. We are eagerly awaiting for the new BaBar datdatifg this
situation.
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