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Quark mass dependence of the pion form factor
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We present a first study of the quark mass dependence of the pion vector form factor, particularly

its curvature (mean quartic radius). By employing the Omnèsrepresentation we can provide

a very clean estimate for a certain combination of the curvature and the square radius, whose

quark mass dependence is being determined from lattice computations. This currently requires

an extrapolation to the physical point. The reach of validity of this extrapolation is determined

by the appearance of the first non-analyticity in the form factor as function of the quark mass.

We also provide an improved value for the curvature at physical values of the quark masses,

namely〈r4〉 = 0.73±0.09 fm4 or equivalentlycV = 4.00± 0.50 GeV−4, for Unitarized Chiral

Perturbation Theory, and〈r4〉 = 0.68± 0.06 fm4, cV = 3.75± 0.33 GeV−4, for a Breit-Wigner

parametrization of the pion scattering phase shifts used inthe Omnès representation.
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1. Introduction

A low-momentum expansion of the pion form factor defines its square and quartic radii,

F(t) = 1+
1
3!
〈r2〉t +

1
5!
〈r4〉t2 +O(t3) (1.1)

the latter also called curvature [1] with the redefinitioncπ
V = 1

5! 〈r
4〉 . These quantities are now being

calculated in Lattice Gauge Theory for large values of the light quark masses (equivalently, pion
mass) that allow extrapolation to the physical point aided by Chiral Perturbation Theory (χPT).
While the square radius is NLO inχPT, the curvature is itself NNLO in the expansion, and a
study of this with controlled uncertainty would require knowledge at NNNLO, which seems out of
today’s reach. We therefore adopt the Omnès representationof the form factor, that, for physical
pion mass, requires only a parametrization of the scattering δ11 phase shift. Employing Unitarized
Chiral Perturbation Theory, also called inverse amplitudemethod (IAM), for this phase shift, we
can control the mass–dependence of the resulting form factor, the result being rigorous to first
order in the mass expansion. Alternatively we calculate thesame quantity using a Breit–Wigner
parametrization for the phase shifts accompanied by the quark mass dependence of theρ mass
as deduced from different sources [2] and the additional assumption that theρππ coupling is
independent of the quark mass. Our study has recently been presented in [3], to which we refer for
further detail and bibliography.

2. The Omnès representation

The Omnès equation encodes the analyticity properties of the pion form factorF(s), that has
an elastic unitarity cut on the positives-axis for s∈ (4m2

π ,∞), and is otherwise analytic. Further
superimposed cuts due to inelastic channels are neglected in its derivation, and the form factor is
assumed to have no zeroes (which, as we know today, is phenomenologically correct). The starting
point is the well known relation Im(F) = tanδ11Re(F), which relates the discontinuity in the vector
form factor to the elastic scattering phase shift in the vector–isovector channel. From this relation
the Watson theorem follows straightforwardly. Since the large-q2 asymptotic behavior of the form
factor is known from QCD counting rules,F(q2) → c/q2, as a matter of principle one may write
an unsubtracted dispersion relation, which reads for arbitrary t

F(t) =
1
π

∫ ∞

4m2
π

dstanδ11(s)
Re(F(s))
s− t − iε

. (2.1)

We specified “as a matter of principle” since the QCD countingrules apply only when elastic
scattering is irrelevant by the numerous inelastic channels open. However, in this work we only
want to use low energy input up to 1.2 GeV and we will thereforeuse a subtracted dispersion
relation below and cut the high energy contributions with a cut–off. The variation of the results
with this cut–off provides a systematic uncertainty in our work, which, as a consequence of the
subtraction, turns out to be moderate.

If there are no bound state poles, as is the case ofππ scattering for physical quark masses, nor
the form factor vanishes anywhere in the complex plane, as wepresume forF(t), the celebrated
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solution family of this equation provides a representationof the form-factor in terms of the scatter-
ing phase shifts, known as the Omnès representation. The standard treatment proceeds by deriving
an integral equation for logF(t)/(2i) instead ofF(t) itself,

log
F(t)
2i

=
1

2π i

∫ ∞

4m2
π

ds
s− t

(

log
F(s+ iε)

2i
− log

F(s− iε)

2i

)

=
1
π

∫ ∞

4m2
π

ds
s− t

δ11(s) . (2.2)

Instead of this relation we may use a subtracted version. This will allow us to effectively suppress
the high energy behavior of the phase shifts. In particular we will use a twice subtracted version
which reads after exponentiation

F(t) = exp

(

P1t +
t2

π

∫ ∞

4m2
π

ds
δ11(s)

s2(s− t − iε)

)

. (2.3)

Note, the normalization condition of the form factor prohibits a constant term in the exponent. The
constantP1 can be identified with the square radius of the pion,P1 = 〈r2〉/6 .

We may read off an expression forcπ
V directly from Eq. (2.3):

cπ
V =

〈r4〉

120
=

1
72

〈r2〉2 +
1
π

∫ ∞

4m2
π

ds
δ11(s)

s3 (2.4)

which is quite a beautiful formula, since it allows a third independent extraction of the curvature
cπ

V besides NNLOχPT or a fit to spacelike data beyond the linear fall int where uncertainties get
large (more sophisticated dispersive analysis [4] show thecontinuous interest in this curvature).
Instead we employ only the elastic phase shifts. In addition, since the quantity

c̃π
V ≡ cπ

V −
1
72

〈r2〉2 (2.5)

is described solely in terms of theππ p-wave phase shifts, its quark mass dependence is linked to
that of theρ–meson properties.

3. Chiral perturbation theory and curvature computation

We start by recalling the chiral expansion of the vector formfactor valid to NLO inχPT,

F(t) = 1+
1

6 f 2
π
(t −4m2

π)J̄(t)+
t

96π2 f 2
π
(l̄6−

1
3
) . (3.1)

Here

J̄(t) =
1

16π2

[

σ log

(

σ −1
σ +1

)

+2

]

(3.2)

with σ =
√

1−4m2
π/t. A common strategy is to fix thēl6 constant from the square charge radius

〈r2〉 =
1

16π2 f 2
π
(l̄6−1) (3.3)

which is correct up toO(m2
π) in χPT. Higher orders in the chiral expansion cannot bring in powers

of t since, by definition, the charge squared radius is proportional to the coefficient of the term
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linear in t in the form factor. However, they can bring additional constants to the right hand side
(each of a natural order suppressed by additional factors of1/(4π fπ )2), and, more important for
our purposes, a polynomial ofm2

π . To make sure we are not eschewing a criticalmπ dependence,
we will compare the right-hand-side of eq.(3.3) with the NNLO correction in chiral perturbation
theory [6]. The NLO result eq. (3.3), that depends only logarithmically on the pion mass (see
eq. (3.6) below), is then extended to

〈r2〉 =
1

16π2 f 2
π

[(

1+
m2

π
8π2 f 2

π
l̄4

)

(l̃6−1)+
m2

π
16π2 f 2

π

(

16π2 13
192

−
181
48

)]

(3.4)

l̃6 ≡ l̄6 +6
m2

π
f 2
π

[

16π2r r
V1(µ2)+

1
48π2 log

(

m2
π

µ2

)(

19
12

− l̄1+ l̄2

)]

wherer r
V1 is a counterterm to be determined empirically, and we will use the simple VMD estimate

from the same work, at theρ scale,r r
V1(m

2
ρ) ≃ −0.25× 10−3 . Then l̃6 = l̄6 − 1.44 (the scale–

dependence of this number cancels).
Next we recall the pion mass dependence of thel̄ ’s. Thel i , as coefficients of the expansion in

powers ofm2
π of the Lagrangian density, are by definition pion–mass independent, and so are their

renormalized countertermsl r
i . However, the barred quantities absorb a chiral logarithm

l r
i =

γi

32π2

[

l̄ i + log

(

m2
π

µ2

)]

(3.5)

that makes thēl ’s scale–independent, but in exchange,mπ–dependent. This dependence needs to
be kept track of in the calculation. This becomes crucial in the chiral limit when the pion radius
diverges due to the virtual pion cloud becoming long–rangedas the pion mass vanishes.

We thus denote bȳlphys
i the value that the low energy constants take by fitting to physical–

world data. Henceforth, when varyingmπ , one needs to change the constant according to

l̄ i = l̄phys
i − log

(

m2
π

(mphys
π )2

)

(3.6)

From χPT we also take the quark–mass dependence of〈r2〉 — c.f. Eq. (2.3). Clearly, the
curvaturecπ

V could also be determined inχPT directly. Depending on the fit and systematics
chosen in Ref. [6], a two–flavorO(p6) χPT calculation, its value could vary between 2−6 GeV−4,
although the authors quote a value around 2.25 GeV−4, in agreement with previous estimates. By
fitting to form factor data, they obtain 3.85 GeV−4).

With these mass–dependences, one can employ a Breit–Wignerparametrization ofδ11,

δ11(s) = arctan
Ima11(s)
Rea11(s)

= arctan
mρΓtot(s)

m2
ρ −s

(3.7)

in terms of theρ mass and total width,Γtot =
g2

ρππ p3

6πm2
ρ

=
g2

ρππ ( s
4−m2

π)3/2

6πm2
ρ

, and studyF(t) for unphysical

pion masses [3] using the input quoted above.
For the IAM one can estimate the quark mass dependence of theρ properties directly from

the χPT amplitudes evaluated up to a given order. It implements NLO in χPT at low momentum,
satisfies elastic unitarity exactly, and fits the pion scattering data up to 1.2 GeV well. To derive the
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Figure 1: Left: Variation of the elasticππ phaseδ11 with mπ in the IAM. The resonance stays above the
ππ threshold, its mass having a slight dependence onmπ , until rather highmπ . Right: Square form factor
modulus for both spacelike and timelikeq2, fitted with the Omnès representation.

expression for the IAM one starts with the on–shellππ scattering amplitude in NLOχPT that, for
I = 1, is A1(s, t,u) = A(t,s,u)−A(u, t,s), with

A(s, t,u) =
s−m2

π
F2 +

1
6F4

[

3J̄(s)
(

s2−m4
π
)

+ J̄(t)
(

t(t −u)−2m2
πt +4m2

πu−2m4
π
)

+ J̄(u)
(

u(u− t)−2m2
πu+4m2

πt −2m4
π
)]

+
1

96π2 f 4
π

[

2

(

l̄1−
4
3

)

(

s−2m2
π
)2

+

(

l̄2−
5
6

)

(

s2 +(t −u)2)−3m4
π l̄3−12m2

πs+15m4
π

]

. (3.8)

The first term can be identified as the leading order, low–energy theorem, but we express it in terms
of the physicalmπ , instead of its leading order valueM. Meanwhile, we keep themπ independent
pion decay constantF. The quantitiesF andM are related to the physical ones via

F = fπ

(

1−
m2

π
16π2 f 2

π
l̄4

)

, M2 = m2
π

(

1+
m2

π
32π2 f 2

π
l̄3

)

.

The latter expression introduces̄l3 into the last line of Eq. (3.8).
The projection to the spatialp–wave has the usual factor of 1/2 to avoid double–counting

quantum states by counting all angular configurations with exchanged identical particles

a11(s) =
1

32π
1
2

∫ 1

−1
dcosθ(cosθ)A1(s, t(s,cosθ),u(s,cosθ)) . (3.9)

One can organize the chiral expansion asa11(s) = aLO
11 (s)+aNLO

11 (s)+ . . . but the series truncated at
any order only satisfies elastic unitarity perturbatively.This is solved, with the first two expansion
terms, by the IAM [7] that reads (suppressing the spin and isospin subindices)

aIAM (s) =
a2

LO(s)

aLO(s)−aNLO(s)
. (3.10)

The first two terms of a Taylor expansion of this amplitude returns NLOχPT as usual for a Padé ap-
proximant. However elastic unitarity is now exact, and the possibility of a zero of the denominator
allows for resonances.
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Figure 2: Left: mπ dependence of the quartic radius for moderate pion masses, plotted together with a new
lattice computation[5]. Right: ˜cV , the Omnès integral over theρ phase shift, directly accessible to the lattice
as a combination of quadratic and quartic spacelike radii. Lines: Breit-Wigner results. Band: IAM.

The associated phase shift

δ IAM
11 (s) = arctan

(

ImaIAM
11 (s)

ReaIAM
11 (s)

)

may be directly employed for the time–like form factor through the Omnès representation.
The low energy constants necessary to complete the calculation are fit to the phase shift data

with fixed l̄3 = 2.9, obtaining the values̄l1 = 0.1± 1.5, l̄2 = 6± 1.3 and l̄4 = 4.3± 0.9. l̄6 =

16.6±0.4 is fit to the experimental value of〈r2〉. Note that with the phase shift data one can only
determine the differencēl2− l̄1 which is about 6. Using Eq. (2.4), the curvature is then

cπ
V = 4.00±0.50 GeV−4, 〈r4〉 = 0.73±0.09 fm4 (3.11)

in good agreement with our cross-check Breit-Wigner valuesand other studies. The quantity de-
pending solely on the phase shift is then ˜cπ

V = 2.13±0.42 GeV−4. These values are to be consid-
ered as our results at the physical pion mass.

4. Varying the pion mass

In fig. 2 we show the dependence of the quartic radius and ˜cV as function of the pion mass,
as reported in [3]. We also plot the very recent lattice computation of [5] that shows excellent
agreement with our results, that can also be used for future lattice extrapolations in the quark
mass. Note that the lattice simulations came out after our prediction. The excellent agreement is
nontrivial, and should be regarded as a strong support of ouranalysis.

Two more comments are of interest for lattice practitioners. The first is the observation that,
taking derivatives of eq.(2.3), one can easily obtain further relations analogous to eq.(2.4). This
family of equations allows, having at hand a computation of the spacelike form factor, and having
extracted the coefficients of its Taylor expansion at low momentum (averages of higher powers of
radii), to access higher integral (inverse) moments of the phase shift in pion-pion scattering, which
is technically more involved to extract.
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Figure 3: mπ evolution of the pion form factor in the Omnès representation with the IAM. Left: physical
pion massmπ = mphys

π . Middle: just under twicemphys
π . Right: just under three timesmphys

π . Theρ becomes
narrower and taller as the decay threshold 2mπ (vertical bar) approaches it.

Our second point concerns the reach of quark–mass extrapolation in the lattice. In fig.3 we
have plotted the evolution of the spacelike and timelike form factors as function of the pion mass.
Since theρ mass, controlled byΛQCD grows only linearly with the quark mass, the threshold for
ρ → ππ (the vertical bar in the figure) increases faster than the resonance mass, eventually closing
the phase space for the decay. But the factor of

√

(s−4m2
π)3, that causes a non-analyticity ins,

also produces one as a function ofmπ . This propagates, through the Omnès representation, to the
form factor. Hence we conclude that the dependence of any moment of the form factor on the pion
mass is an analytic function around the physical mass, but for high enoughmπ , a kink is found that
spoils the usual polynomial or chiral extrapolation of lattice data.

This phenomenon is generic and occurs whenever a resonance dives under its decay threshold,
the intensity of the kink depending on the width of the resonance at the physical point (for couplings
that are weakly dependent on the pion mass). We are preparinga further work with a complete
investigation [8].
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