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We study chiral corrections to the ratio between the longitudinal and transverse decay couplings

f⊥V / fV for the lightest(1−−) vector mesons. This ratio is of relevance in the determination of

CKM matrix elements from exclusive B decays and has recentlyattracted considerable interest

inside the lattice community. With the present accuracy, knowledge of the chiral corrections to

f⊥V / fV is an essential ingredient in order to extrapolate the results from quark masses in lattice

simulations to the physical masses. We compute the leading order chiral corrections using Heavy

Meson Effective Theory. We find that kaon logarithms are absent, while pion logarithms con-

tribute to f⊥ρ / fρ , but not to theK∗ andφ ratios. NLO chiral corrections areO(m3/2
q ) and purely

analytic. As an illustration, we apply our results to recent(unquenched) lattice data.
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1. Introduction

Due to their quantum numbers,(1−−) vector mesons can be interpolated both by the vector
(q̄γµq) and tensor ( ¯qσµνq) currents. The resulting couplings are denoted byfV and f⊥V respectively,
and are important quantities in the determination of CKM matrix elements from Light-Cone Sum
Rules (LCSR) applied to semileptonic and radiative B meson decays.

However, while the longitudinal couplingfV can be determined experimentally, for instance
from hadronicτ decays ore+e− annihilation, the transverse coupling is experimentally inaccessible
and has to be computed using non-perturbative techniques, predominantlyLCSR (see [1] for a
review of the latest results) and lattice QCD [2, 3, 4, 5, 6].1

As it was noted in Ref. [2], the extraction of|Vub| from the semileptonic B meson decay
B → ρℓν is particularly sensitive tof⊥ρ , which in particular means that an effort in accuracy is
needed. In this respect, the main advantage of lattice QCD is that it is the ratiof⊥ρ / fρ which enters
the sum rule. This means that in principle one can get a very clean determination of this quantity,
since systematic errors cancel in the ratio.

However, an essential ingredient in all lattice analyses is the extrapolation of the results from
the masses used in the simulations to the physical masses. Presently, aχPT-based formula to do
the extrapolation is lacking and the different lattice groups usead hocextrapolation formulae. For
instance, in Ref. [2, 6] the chiral extrapolation was made with linear and quadratic fits in the quark
masses. With the advent of the first unquenched lattice data onf⊥V / fV [6], we think that a better,
theoretically motivated formula should be employed instead.

2. Theoretical framework

In order to study the influence of the(π,K,η) octet on the ratio between vector meson decay
couplings, we need an effective field theory that couples the(1−−) states with pseudo-Goldstone
bosons in a chirally-symmetric way. However, a generic problem one encounters is that, since
vector meson masses are not protected by chiral symmetry, derivatives on vector fields spoil the
chiral power counting of the theory. A possible solution is to factor out the heavy component of
the momentum and work with fields which only depend on the residual (soft) momentum. This
approach, inspired on HQET and HBχPT, was first introduced in Ref. [10] and is usually referred
to as Heavy Meson Effective Theory (HMET).

In Ref. [11], HMET was generalized to include generic external vectorcurrents and used to
compute the chiral corrections to the longitudinal vector meson decay couplings. In this work, we
will have to extend the theory to account for external tensor currents.

The chiral properties of tensor external sources were worked out inRef. [12], and we refer
there for further details. By adding the source term ¯qσµν tµνq to the QCD Lagrangian, the effective
field theory acquires the new fieldstµν

LR andtµν
RL , where the subscripts indicate their transformation

properties underSU(nf )L ×SU(nf )R:

{ tµν
LR , tµν

RL } 7−→ {VL tµν
LR V†

R , VRtµν
RL V†

L } , (2.1)

1See [7, 8, 9] for different determinations.
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with VL,R ∈ SU(nf )L,R. Its relation to the QCD tensor source is

tµν = Pµνλρ
+ tLR

λρ +Pµνλρ
− tRL

λρ , (2.2)

where

Pµνλρ
± =

1
4
(gµλ gνρ −gµρgνλ ± iεµνλρ) (2.3)

are chiral projectors [12].
The effective field theory is then build out of the Goldstone fields, collectedas

u = exp

(

i
Π√
2F0

)

; Π =















π0√
2
+ η√

6
π+ K+

π− −π0√
2

+ η√
6

K0

K− K̄0 − 2η√
6















, (2.4)

together with the external fields and the vector meson states. It is convenient to work in the follow-
ing basis

uµ = iu†DµUu† = i [u†(∂µ − i r µ)u−u(∂µ − i l µ)u†] ,

hµν = ∇µuν +∇νuµ ,

χ± = u†χ u†±uχ†u ,

Q̂±ν = ul̂νu†±u†r̂νu ,

T̂±µν = u†t̂LR
µνu†±u t̂RL

µνu , (2.5)

such that all elements transform in the adjoint representation of the unbrokenSU(nf )L+R. As for
the vector meson fields, in this work we will assume ideal mixing between octet and singlet states,
such that theφ field is a puress̄ state, whileρ0 andω are orthogonal combinations ofu andd
quarks. Within this approximation, the vector mesons can be collected in theU(3) matrix

Sµ =















ω+ρ0
√

2
ρ+ K∗+

ρ− ω−ρ0
√

2
K∗0

K∗− K̄∗0 φ















µ

. (2.6)

As mentioned above, in the framework of HMET it is convenient to factor outthe heavy compo-
nents of the momentum and work instead with labelled fieldsS(v)

µ , which only depend on the soft
residual momentum:

Sµ =
1√
2m

[

e−imv·xS(v)
µ +e+imv·xS(v)†

µ

]

+S||µ . (2.7)

The parallel componentS||µ can be integrated out and therefore will play no role in our computation.
In the following we will drop the velocity label from the effective fields and write them simply as
Ŝµ . Finally, since we want the vector meson fields to couple to external sources, an analogous
decomposition has to be performed on them. The last two lines of Eq. (2.5) arealready written
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P C T h.c.

Sµ Sµ −ST
µ Sµ S†

µ

vµ vµ vµ vµ vµ

∇µ ∇µ ∇µ −∇µ ∇µ

u u† uT u u†

uµ −uµ uT
µ uµ uµ

l̂µ r̂µ −r̂T
µ l̂ µ l̂†

µ

r̂µ l̂ µ −l̂T
µ r̂µ r̂†

µ

χ± ±χ± χT
± ±χ± ±χ†

±

Q̂±ν ±Q̂ν
± ∓Q̂T

±ν Q̂ν †
± Q̂†

±ν

T̂±µν ±T̂µν
± −T̂T

±µν −T̂µν †
± ±T̂†

±µν

Table 1: Transformation properties of the various fields entering HMET under discrete symmetries.

down in the heavy meson limit.2 Finally, we will assume that botĥQ±
µ and T̂±

µν areO(1) in the
chiral power-counting. This choice is completely arbitrary and it only entailsthat the leading
operators in the effective Lagrangian will beO(p0).

One can then proceed to build the most general Lagrangian compatible with chiral symmetry
and invariant underP, C andT .3 Using Table 1, one can show that the relevant operators at
O(p0), O(p) andO(p2) read

L
(0) = −iŜ†

µ(v·∂ )Ŝµ +λ1〈ŜµQ̂µ †
+ 〉+ iλ2〈Ŝµ T̂†

+µν〉vν (2.8)

+ λ3〈Ŝµ〉〈Q̂µ †
+ 〉+ iλ4〈Ŝµ〉〈T̂†

+µν〉vν +h.c. ,

L
(1) = εµνρλ

[

iµ1〈uµ

{

Ŝρ , Ŝ†
λ

}

〉vν + iµ2〈uλ

{

Ŝµ ,Q̂†
+ρ

}

〉vν + µ3〈uµ

{

Ŝρ , T̂†
+νλ

}

〉 (2.9)

+ iµ4

{

〈uµ Ŝρ〉〈Ŝ†
λ 〉+ 〈uµ Ŝ†

λ 〉〈Ŝρ〉
}

vν + iµ5〈uλ Ŝµ〉〈Q̂†
+ρ〉vν + iµ6〈uλ Q̂†

+ρ〉〈Ŝµ〉vν

+ µ7〈uµ Ŝρ〉〈T̂†
+νλ 〉+ µ8〈uµ T̂†

+νλ 〉〈Ŝρ〉
]

+h.c. ,

L
(2) = λ5〈

{

Ŝµ ,χ+

}

Q̂†
+µ〉+ iλ6〈

{

Ŝµ ,χ+

}

T̂†
+µν〉vν (2.10)

+ λ7〈Ŝµ χ+〉〈Q̂†
+µ〉+ iλ8〈Ŝµ χ+〉〈T̂†

+µν〉vν

+ λ9〈Ŝµ〉〈χ+Q̂†
+µ〉+ iλ10〈Ŝµ〉〈χ+T̂†

+µν〉vν

+ λ11〈χ+〉〈ŜµQ̂†
+µ〉+ iλ12〈χ+〉〈Ŝµ T̂†

+µν〉vν

+ λ13〈Ŝµ〉〈χ+〉〈Q̂†
+µ〉+ iλ14〈Ŝµ〉〈χ+〉〈T̂†

+µν〉vν +h.c.

2In this work theχ+ field will only play the role of a mass insertion operator. Therefore, for our purposes,χ+ =

2χ = 4B0diag(mu,md,ms).
3Since the field decomposition of Eq. (2.7) manifestly breaks Lorentz invariance, theCPT theorem does not apply

and one has to ensure that each discrete symmetry is separately conserved.
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Figure 1: Diagrams contributing to the ratiof⊥V / fV up to m3/2
q in HMET. From left to right, LO [(a)],

NLO [(b) and (c)] and NNLO [(d)] contributions. Circle-cross vertices depict operators ofO(1), while box
vertices and dotted vertices representO(p) andO(p2) operators, respectively.

The quantities we want to evaluate are defined as follows:

〈0| ūγµd(0) |ρ+(p,λ )〉 =̇ fρ mρ ε(λ )
µ ,

〈0| ūσµνd(0) |ρ+(p,λ )〉 =̇ i f ⊥ρ mρ(ε(λ )
ν vρ − ε(λ )

ρ vν) , (2.11)

and similar expressions for the rest of the(1−−) nonet, where it should be noted that we define the
couplingsfV and f⊥V to be the ones associated to isospin currents.

In order to identify the number of diagrams that contribute at each given order in the chiral
expansion, it is useful to use the power counting scheme of HMET [13]:

d = 2+2NL +NR+∑
n

(n−2)Nn (2.12)

whereNL is the number of loops,NR the number of internal resonance lines andNn the number
of operators with chiral countingn. Using the previous formula it is easy to show that the only
diagrams contributing up toO(m3/2

q ) are the ones depicted in Figure 1.4

3. Results and conclusions

We will present our results for two and three dynamical flavours. ForSU(2), there are a
number of simplifications that can be made. In the first place, some of the operators in Eq. (2.8)
turn out to be linearly dependent. Using the so-called Cayley-Hamilton relations among traces, it is
easy to show that the following subsets of couplings are related:{µ1,µ4},{µ3,µ7,µ8}, {µ2,µ5,µ6},
{λ5,λ7,λ9,λ11,λ13} and{λ6,λ8,λ10,λ12,λ14} and therefore one coupling in each subset can be
eliminated. Additionally, if one is working in the isospin limit the mass insertion matrixχ+ is
proportional to the identity, which results in further simplifications: only one representative of the
subsets{λ7,λ9,λ13} and{λ8,λ10,λ14} is independent. In the following we will take the isospin
limit and setmu = md = m.

Taking all these considerations into account, our final result reads

f⊥ρ
fρ

=
f⊥V
fV

[

1+
m

32π2F2
0

log

(

m2

m̂2
ρ

)]

,

f⊥ω
fω

=
f⊥V
fV

[

1+2Λ− 3m

32π2F2
0

log

(

m2

m̂2
ω

)]

, (3.1)

4Wave function renormalization and mass corrections are not included since they cancel identically in the ratio.
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Table 2: Results forf T
V / fV from the various fits (data taken from Ref. [6]).

Linear Quadratic Chiral

f T
ρ / fρ 0.619(15) 0.600(38) 0.585(64)

χ2/dof 0.17 0.09 0.06

f T
K / fK 0.6498(62) 0.644(17) 0.638(31)

χ2/dof 0.11 0.09 0.07

f T
φ / fφ 0.6838(33) 0.6815(95) 0.680(17)

χ2/dof 0.10 0.12 0.15

where f⊥V / fV = λ2/λ1 and m̂ρ , m̂ω are combinations of couplings fromL (2). Λ is a Zweig-
suppressed term coming from the second line ofL (0) and is expected to be extremely small.

For theSU(3) case the results are

f⊥ρ
fρ

=
f⊥V
fV

[

1+2mΛ̄+msΛ̃+
m2

π
32π2F2

0

log

(

m2
π

µ2

)

−
m2

η

96π2F2
0

log

(

m2
η

µ2

)]

,

f⊥K
fK

=
f⊥V
fV

[

1+m(Λ̄+ Λ̃)+msΛ̄+
m2

η

48π2F2
0

log

(

m2
η

µ2

)]

,

f⊥φ
fφ

=
f⊥V
fV

[

1+mΛ1 +msΛ2 +Λ−
m2

η

24π2F2
0

log

(

m2
η

µ2

)]

. (3.2)

Two comments are in order at this point: (i) kaon loops are non-vanishing for each decay coupling
but cancel in the ratios, whereas pion loops are absent in theK∗ andφ ratios. Therefore, inSU(2)×
U(1)S χPT, which is the framework used by many lattice groups, onlyf⊥ρ / fρ is sensitive to pion

loops; (ii) in the preceeding equations we have omitted theO(m3/2
q ) terms. Its actual computation

involves a sizeable number of new operators (see Ref. [11] for the fullset) but its contribution gives
a purely analytic piece. We refer to Ref. [13] for further details.

As a simple application of our results, one can consider the recent unquenched RBC data of
Ref. [6] and check if they can be qualitatively described by Eq. (3.2). In particular, we would like to
test the absence of light-quark logarithms in theK∗ andφ channels. A possible strategy is to fit the
data points for the different channels with a chiral logarithm and compare the results with the linear
and quadratic fits of [6]. In Table 2 we summarize the values for the resultingchiral extrapolations,
where the errors quoted are only statistical. As an illustration, the results forthe different fits for
f⊥ρ / fρ are shown in Figure 2.

We want to emphasize that the results shown in Table 2 and Figure 2 (and the conclusions
thereof) should be taken only as indicative: the data reported in Ref. [6]are obtained at a finite
lattice spacing, i.e., they are not in the continuum limit. Moreover, data are still scarce to be
statistically significant and the values of the quark masses used in the simulationsare still too high
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Figure 2: Chiral extrapolations for linear (blue dotted line), quadratic (dashed line) and logarithmic (solid
red line) fits. We have absorbed the lattice spacing intom. Data taken from Ref. [6].

to unambiguously show the presence or absence of logarithmic behaviour.Therefore, the use of
our chiral extrapolation formulae should be seen only as a plausible exercise at this point. With
these caveats in mind, data seem to be in fair agreement with Eq. (3.2): for theρ meson the best fit
is the logarithmic one, while for theφ the linear fit gives the best results. For theK∗ the situation
is less clear and at present no conclusions can be drawn.
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