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1. Introduction

Virtually all present-day computer systems, from personalcomputers to the largest supercom-
puters, implement the IEEE 64-bit floating-point arithmetic standard, which provides 53 mantissa
bits, or approximately 16 decimal digit accuracy. For most scientific applications, 64-bit arithmetic
is more than sufficient, but for a rapidly expanding body of applications, it is not. In these appli-
cations, portions of the code typically involve numerically sensitive calculations, which produce
results of questionable accuracy using conventional arithmetic. These inaccurate results may in
turn induce other errors, such as taking the wrong path in a conditional branch.

Exacerbating these difficulties is the proliferation of very large-scale highly parallel computer
systems, as as exemplified by the Top500 list (seehttp://www.top500.org ). One inescapable
consequence of the greatly increased scale of these calculations is that numerical anomalies which
heretofore have been minor nuisances are now much more likely to have significant impact. At
the same time, the majority of persons performing these computations are not experts in numerical
analysis, and thus are more likely to be unaware of the potential numerical difficulties that may
exist. Thus, while some may argue that numerically sensitive calculations can be remedied by
using different algorithms or coding techniques, in practice it is usually easier, cheaper and more
reliable to employ high-precision arithmetic to overcome them.

One concrete illustration of these difficulties is providedby the following example. Consider
the very simple 1-D differential equationy′′(x) = − f (x) for some functionf (x). Discretization of
this system immediately leads to the matrix

























2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
· · · · · ·
0 · · · −1 2 −1 0
0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2

























.

The condition number of this matrix (namely the quotient of the largest eigenvalue to the smallest
eigenvalue) is readily seen to be approximated by

κ(n) ≈
4(n+1)2

π2 ,

wheren×n is the size of the linear system above (the authors are indebted to Bastian Pentenrieder
of ETH Zurich for this observation). Note that even whenn = 107, which is a fairly modest
size compared to some being attempted in current high-end computing, the condition number is
sufficiently large that the system (depending on the nature of function f (x)) cannot be reliably
solved using conventional IEEE 64-bit floating-point arithmetic.

2. High-Precision Software

Algorithms for performing high-precision arithmetic are fairly well known [19], and soft-
ware packages implementing these schemes have been available since the early days of computing.
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However, many of these packages require one to rewrite a scientific application with individual sub-
routine calls for each arithmetic operation. The difficultyof writing and debugging such code has
deterred all but a few scientists from using such software. But in the past few years, high-precision
software packages have been produced that include high-level language interfaces, making such
conversions relatively painless. These packages typically utilize custom datatypes and operator
overloading features, which are now available in languagessuch as C++ and Fortran-90, to facil-
itate conversion. Even more advanced high-precision computation facilities are available in the
commercial productsMathematicaandMaple, which incorporate arbitrary-precision arithmetic in
a natural way for a wide range of functions. However, these products do not provide a means to
convert existing scientific programs written in other languages.

Some examples of high-precision arithmetic software packages that are freely available on the
Internet are the following, listed in alphabetical order. The ARPREC, QD and MPFUN90 packages
are available from the first author’s website:http://crd.lbl.gov/˜dhbailey/mpdist .

• ARPREC. This package includes routines to perform arithmetic with an arbitrarily high level
of precision, including many algebraic and transcendentalfunctions. High-level language in-
terfaces are available for C++ and Fortran-90, supporting real, integer and complex datatypes.

• GMP. This package includes an extensive library of routinesto support high-precision inte-
ger, rational and floating-point calculations. GMP has beenproduced by a volunteer effort
and is distributed under the GNU license by the Free SoftwareFoundation. It is available at
http://gmplib.org .

• MPFR. The MPFR library is a C library for multiple-precisionfloating-point computations
with exact rounding, and is based on the GMP multiple-precision library. Additional infor-
mation is available athttp://www.mpfr.org .

• MPFR++. This is a high-level C++ interface to MPFR. Additional information is available at
http://perso.ens-lyon.fr/nathalie.revol/software.ht ml . A similar package
is GMPFRXX, available athttp://math.berkeley.edu/˜wilken/code/gmpfrxx .

• MPFUN90. This is equivalent to ARPREC in user-level functionality, but is written entirely
in Fortran-90 and provides a Fortran-90 language interface.

• QD. This package includes routines to perform “double-double” (approx. 31 digits) and
“quad-double” (approx. 62 digits) arithmetic. High-levellanguage interfaces are available
for C++ and Fortran-90, supporting real, integer and complex datatypes. The QD package is
much faster than using arbitrary precision software when 31or 62 digits is sufficient.

Using high-precision software increases computer run times, compared with using conven-
tional 64-bit arithmetic. For example, computations usingdouble-double precision arithmetic typ-
ically run five times slower than with 64-bit arithmetic. This figure rises to 25 times for the quad-
double arithmetic, to more than 50 times for 100-digit arithmetic, and to more than 1000 times for
1000-digit arithmetic.
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3. Applications of High-Precision Arithmetic

Here we briefly mention a few of the growing list of scientific computations that require high-
precision arithmetic, and provide some analysis of their numerical requirements.

3.1 Supernova Simulations

Recently Edward Baron, Peter Hauschildt, and Peter Nugent used the QD package, which
provides double-double (128-bit or 31-digit) and quad-double (256-bit or 62-digit) datatypes, to
solve for the non-local thermodynamic equilibrium populations of iron and other atoms in the
atmospheres of supernovae and other astrophysical objects[15, 24]. Iron for example may exist as
Fe II in the outer parts of the atmosphere, but in the inner parts Fe IV or Fe V could be dominant.
Introducing artificial cutoffs leads to numerical glitches, so it is necessary to solve for all of these
populations simultaneously. Since the relative population of any state from the dominant stage
is proportional to the exponential of the ionization energy, the dynamic range of these numerical
values can be very large.

In order to handle this potentially very large dynamic range, yet at the same time perform
the computation in reasonable time, Baron, Hauschildt and Nugent employ an automatic scheme
to determine whether to use 64-bit, 128-bit or 256-bit arithmetic in both constructing the matrix
elements and in solving the linear system.

3.2 Climate Modeling

It is well-known that climate simulations are fundamentally chaotic—if microscopic changes
are made to the present state, within a certain period of simulated time the future state is completely
different. Indeed, ensembles of these calculations are required to obtain statistical confidence in
global climate trends produced from such calculations. As aresult, computational scientists in-
volved in climate modeling applications have resigned themselves that their codes quickly diverge
from any “baseline” calculation, even if they only change the number of processors used to run
the code. For this reason, it is not only difficult for researchers to compare results, but it is often
problematic even to determine whether they have correctly deployed their code on a given system.

Recently Helen He and Chris Ding investigated this non-reproducibility phenomenon in a
widely-used climate modeling code. They found that almost all of the numerical variation occurred
in one inner product loop in the atmospheric data assimilation step, and in a similar operation in
a large conjugate gradient calculation. He and Ding found that a straightforward solution was to
employ double-double arithmetic for these loops. This single change dramatically reduced the
numerical variability of the entire application, permitting computer runs to be compared for much
longer run times than before [25].

3.3 Planetary Orbit Calculations

One central question of planetary theory is whether the solar system is stable over cosmologi-
cal time frames (billions of years). Planetary orbits well known to exhibit chaotic behavior. Indeed,
as Isaac Newton once noted, “The orbit of any one planet depends on the combined motions of all
the planets, not to mention the actions of all these on each other. To consider simultaneously all
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these causes of motion and to define these motions by exact laws allowing of convenient calculation
exceeds, unless I am mistaken, the forces of the entire humanintellect.” [22, pg. 121].

Scientists have studied this question by performing very long-term simulations of planetary
motions. These simulations typically do fairly well for long periods, but then fail at certain key
junctures, such as when two planets pass fairly close to eachother. Researchers have found that
double-double or quad-double arithmetic is required to avoid severe numerical inaccuracies, even
if other techniques are employed to reduce numerical error [26].

3.4 Coulomb n-Body Atomic System Simulations

Numerous computations have been performed recently using high-precision arithmetic to study
atomic-level Coulomb systems. For example, Alexei Frolov of Queen’s University in Ontario,
Canada has used high-precision software to solve the generalized eigenvalue problem(Ĥ−EŜ)C =

0, where the matriceŝH andŜare large (typically 5,000×5,000 in size) and very nearly degen-
erate. Until recently, progress in this arena was severely hampered by the numerical difficulties
induced by these nearly degenerate matrices.

Frolov has done his calculations using the MPFUN90 package,with a numeric precision level
exceeding 100 digits. Frolov notes that in this way “we can consider and solve the bound state few-
body problems which have been beyond our imagination even four years ago.” He has also used
MPFUN90 to compute the matrix elements of the Hamiltonian matrix Ĥ and the overlap matrix
Ŝ in four- and five-body atomic problems. As of this date, Frolov has written a total of 21 papers
based on high-precision computations. Two illustrative examples are [13] and [23].

3.5 Studies of the Fine Structure Constant of Physics

In the past few years, significant progress has been achievedin using high-precision arithmetic
to obtain highly accurate solutions to the Schrodinger equation for the lithium atom. In particu-
lar, the nonrelativistic ground state energy has been calculated to an accuracy of a few parts in a
trillion, a factor of 1500 improvement over the best previous results. With these highly accurate
wavefunctions, Zong-Chao Yan and others have been able to test the relativistic and QED effects
at the 50 parts per million (ppm) level and also at the one ppm level [30]. Along this line, a number
of properties of lithium and lithium-like ions have also been calculated, including the oscillator
strengths for certain resonant transitions, isotope shifts in some states, dispersion coefficients and
Casimir-Polder effects between two lithium atoms.

Theoretical calculations of the fine structure splittings in helium atoms have now advanced to
the stage that highly accurate experiments are now planned.When some additional computations
are completed, a unique atomic physics value of the fine structure constant may be obtained to an
accuracy of 16 parts per billion [32].

3.6 Scattering Amplitudes of Quarks, Gluons and Bosons

An international team of physicists, in preparation for theLarge Hadron Collider (LHC), is
computing scattering amplitudes involving quarks, gluonsand gauge vector bosons, in order to
predict what results could be expected on the LHC. By default, these computations are performed
using conventional double precision (64-bit IEEE) arithmetic. Then if a particular phase space point
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is deemed numerically unstable, it is recomputed with double-double precision. These researchers
expect that further optimization of the procedure for identifying unstable points may be required
to arrive at an optimal compromise between numerical accuracy and speed of the code. Thus
they plan to incorporate arbitrary precision arithmetic, using either the MPFUN90 or ARPREC
packages, into these calculations. Their objective is to design a procedure where instead of using
fixed double or quadruple precision for unstable points, thenumber of digits in the higher precision
calculation is dynamically set according to the instability of the point [21].

In a related study, various checks of instabilities are employed, such as by comparing gluon
amplitudes with known analytic values whenever possible. If a given point is deemed unstable
by these tests, the researchers employ the QD package to re-evaluate the unstable points using
higher precision (double-double or quad-double as needed). Because only a few points have to
be re-computed to higher precision, they find that their average evaluation time is not significantly
increased [16].

Two other recent examples of employing high-precision arithmetic in fundamental physics
calculations of this type are [27] and [20].

3.7 Nonlinear Oscillator Theory

Quinn, Rand, and Strogatz recently described a nonlinear oscillator system by means of the
formula

0 =
N

∑
i=1

(

2
√

1−s2(1−2(i −1)/(N−1))2−
1

√

1−s2(1−2(i −1)/(N−1))2

)

.

They noted that for largeN, s≈ 1− c/N, where c = 0.6054436... These researchers asked the
present authors and Richard Crandall to validate and extendthis computation, and challenged us
to identify this limit if it exists. By means of a Richardson extrapolation scheme, implemented on
64-CPUs of a highly parallel computer system, we computed (using the QD software)

c = 0.6054436571967327494789228424472074752208996. . .

This led to a proof that the limitc exists and is the root of a Hurwitz zeta functionζ (1/2,c/2) = 0,
whereζ (s,a) := ∑n≥0 1/(n+a)s. As a bonus, we obtained some asymptotic terms [8].

3.8 Experimental Mathematics

High-precision computations have proven to be an essentialtool for the emerging discipline of
“experimental mathematics,” namely the utilization of modern computing technology as an active
agent of exploration in mathematical research [17][5]. Oneof the key techniques used here is
the PSLQ integer relation detection algorithm [10]. An integer relation detection scheme is a
numerical algorithm which, given ann-long vector(xi) of real numbers (presented as a vector of
high-precision floating-point values), attempts to recover the integer coefficients(ai), not all zero,
such that

a1x1 +a2x2 + · · ·+anxn = 0

6
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(to available precision), or else determines that there areno such integers(ai) such that the Eu-

clidean norm
√

a2
1 +a2

2 + · · ·+a2
n < M for some boundM. The PSLQ algorithm operates by devel-

oping, iteration by iteration, an integer-valued matrixA which successively reduces the maximum
absolute value of the entries of the vectory = Ax (wherex is the input vector mentioned above),
until one of the entries ofy is zero or within an “epsilon” of zero. With PSLQ or any other inte-
ger relation detection scheme, if the underlying integer relation vector of lengthn has entries of
maximum sized digits, then the input data must be specified to at leastnd-digit precision (and the
algorithm must be performed using this precision level) or else the true relation will be lost in a sea
of spurious numerical artifacts.

Perhaps the best-known application of PSLQ in experimentalmathematics is the 1996 discov-
ery of what is now known as the “BBP” formula forπ:

π =
∞

∑
k=0

1
16k

(

4
8k+1

−
2

8k+4
−

1
8k+5

−
1

8k+6

)

.

This formula has the remarkable property that it permits oneto calculate binary or hexadecimal
digits beginning at then-th digit, without needing to calculate any of the firstn− 1 digits, using
a simple scheme that requires very little memory and no multiple-precision arithmetic software
[4][17, pg. 135-143]. Since 1996, numerous other formulas of this type have been found, using the
PSLQ-based computational approach, and then subsequentlyproven [17, pg. 147–149].

In an unexpected turn of events, it has been found that these computer-discovered formulas
have implications for the age-old question of whether (and why) the digits of constants such asπ
and log2 are statistically random [11][17, pg. 163–174]. This same line of investigation has further
led to a formal proof of normality (statistical randomness in a specific sense) for an uncountably
infinite class of explicit real numbers. The simplest example of this class is the constant

α2,3 =
∞

∑
n=1

1
3n23n ,

which is provably 2-normal: every string ofm binary digits appears, in the limit, with frequency
2−m [12][17, pg. 174–178].

3.9 Ising Integrals

Several recent applications of high-precision computation have attempted to recognize definite
integrals (typically arising in mathematical physics applications) using the methods of experimental
mathematics. These computations have required the evaluation of integrals to very high precision,
typically 100 to 1000 digits. In our studies, we have used either Gaussian quadrature (in cases
where the function is well behaved in a closed interval) or the “tanh-sinh” quadrature scheme due to
Takahasi and Mori [29] (in cases where the function has an infinite derivative or blow-up singularity
at one or both endpoints). For many integrand functions, these schemes exhibit “quadratic” or
“exponential” convergence – dividing the integration interval in half (or, equivalently, doubling the
number of evaluation points) approximately doubles the number of correct digits in the result.

The tanh-sinh scheme is based on the observation, rooted in theEuler-Maclaurin summation
formula, that for certain bell-shaped integrands (namely those where the function and all higher
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derivatives rapidly approach zero at the endpoints of the interval), a simple block-function or trape-
zoidal approximation to the integral is remarkably accurate [2, pg. 180]. This principle is exploited
in the tanh-sinh scheme by transforming an integral of a given function f (x) on a finite inter-
val such as[−1,1] to an integral on(−∞,∞), by using the change of variablex = g(t), where
g(t) = tanh(π/2·sinht). The functiong(t) has the property thatg(x) → 1 asx→ ∞ andg(x)→−1
asx→ −∞, and also thatg′(x) and all higher derivatives rapidly approach zero for large positive
and negative arguments. Thus one can write, forh > 0,

∫ 1

−1
f (x)dx =

∫ ∞

−∞
f (g(t))g′(t)dt ≈ h

N

∑
j=−N

w j f (x j),

where the abscissasx j = g(h j), the weightsw j = g′(h j), andN is chosen large enough that terms
beyondN (positive or negative) are smaller than the “epsilon” of thenumeric precision being used.
In many cases, even wheref (x) has an infinite derivative or an integrable singularity at one or both
endpoints, the transformed integrandf (g(t))g′(t) is a smooth bell-shaped function for which the
Euler-Maclaurin argument applies. In these cases, the error in this approximation decreases more
rapidly than any fixed power ofh.

In a recent study, the present authors together with RichardCrandall applied tanh-sinh quadra-
ture, implemented using the ARPREC package, to study the following classes of integrals [7]. The
Dn integrals arise in the Ising theory of mathematical physics, and theCn have tight connections to
quantum field theory.

Cn =
4
n!

∫ ∞

0
· · ·
∫ ∞

0

1
(

∑n
j=1(u j +1/u j)

)2

du1

u1
· · ·

dun

un

Dn =
4
n!

∫ ∞

0
· · ·
∫ ∞

0

∏i< j

(

ui−uj

ui+uj

)2

(

∑n
j=1(u j +1/u j)

)2

du1

u1
· · ·

dun

un

En = 2
∫ 1

0
· · ·
∫ 1

0

(

∏
1≤ j<k≤n

uk−u j

uk +u j

)2

dt2 dt3 · · ·dtn,

where (in the last line)uk = ∏k
i=1 ti.

Needless to say, evaluating thesen-dimensional integrals to high precision presents a daunting
computational challenge. Fortunately, in the first case, wewere able to show that theCn integrals
can be written as one-dimensional integrals:

Cn =
2n

n!

∫ ∞

0
pKn

0(p)dp,

whereK0 is themodified Bessel function[1]. After computingCn to 1000-digit accuracy for various
n, we were able to identify the first few instances ofCn in terms of well-known constants, e.g.,

C3 = L−3(2) = ∑
n≥0

(

1
(3n+1)2 −

1
(3n+2)2

)

C4 =
7
12

ζ (3),

8
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whereζ denotes the Riemann zeta function. When we computedCn for fairly largen, for instance

C1024 = 0.63047350337438679612204019271087890435458707871273234. . . ,

we found that these values rather quickly approached a limit. By using the new edition of the
Inverse Symbolic Calculator, available athttp://ddrive.cs.dal.ca/˜isc , this numerical
value can be identified as

lim
n→∞

Cn = 2e−2γ ,

whereγ is Euler’s constant. We later were able to prove this fact—this is merely the first term of an
asymptotic expansion—and thus showed that theCn integrals are fundamental in this context [7].

The integralsDn andEn are much more difficult to evaluate, since they are not reducible to
one-dimensional integrals (as far as we can tell), but with certain symmetry transformations and
symbolic integration we were able to reduce the dimension ineach case by one or two. In the case
of D5 andE5, the resulting 3-D integrals are extremely complicated, but we were nonetheless able
to numerically evaluate these to at least 240-digit precision on a highly parallel computer system.
In this way, we produced the following evaluations, all of which except the last we subsequently
were able to prove:

D2 = 1/3

D3 = 8+4π2/3−27L−3(2)

D4 = 4π2/9−1/6−7ζ (3)/2

E2 = 6−8log2

E3 = 10−2π2−8log2+32log2 2

E4 = 22−82ζ (3)−24log2+176log2 2−256(log32)/3+16π2 log2−22π2/3

E5
?
= 42−1984Li4(1/2)+189π4/10−74ζ (3)−1272ζ (3) log 2+40π2 log22

−62π2/3+40(π2 log2)/3+88log42+464log2 2−40log2,

where Li denotes the polylogarithm function. In the case ofD2, D3 andD4, these are confirmations
of known results. We tried but failed to recognizeD5 in terms of similar constants (the 500-digit
numerical value is available if anyone wishes to try). The conjectured identity shown here forE5

was confirmed to 240-digit accuracy, which is 180 digits beyond the level that could reasonably be
ascribed to numerical round-off error; thus we are quite confident in this result even though we do
not have a formal proof.

In a follow-on study [9], we examined the following generalization of theCn integrals:

Cn,k =
4
n!

∫ ∞

0
· · ·
∫ ∞

0

1
(

∑n
j=1(u j +1/u j)

)k+1

du1

u1
· · ·

dun

un
.

Here we made the initially surprising discovery—now provenin [18]—that there are linear relations
in each of the rows of this array (considered as a doubly-infinite rectangular matrix), e.g.,

0 = C3,0−84C3,2 +216C3,4

9
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0 = 2C3,1−69C3,3 +135C3,5

0 = C3,2−24C3,4 +40C3,6

0 = 32C3,3−630C3,5 +945C3,7

0 = 125C3,4−2172C3,6 +3024C3,8.

In yet a more recent study, co-authored with physicists David Broadhurst and Larry Glasser
[6], we were able to analytically recognize many of theseCn,k integrals—because, remarkably,
these same integrals appear naturally in quantum field theory (for oddk). We also discovered, and
then proved with considerable effort, that withcn,k normalized byCn,k = 2n cn,k/(n! k!), we have

c3,0 =
3Γ6(1/3)

32π22/3
=

√
3π3

8 3F2

(

1/2,1/2,1/2
1,1

∣

∣

∣

∣

∣

1
4

)

c3,2 =

√
3π3

288 3F2

(

1/2,1/2,1/2
2,2

∣

∣

∣

∣

∣

1
4

)

c4,0 =
π4

4

∞

∑
n=0

(2n
n

)4

44n =
π4

4 4F3

(

1/2,1/2,1/2,1/2
1,1,1

∣

∣

∣

∣

∣

1

)

c4,2 =
π4

64

[

44F3

(

1/2,1/2,1/2,1/2
1,1,1

∣

∣

∣

∣

∣

1

)

−34F3

(

1/2,1/2,1/2,1/2
2,1,1

∣

∣

∣

∣

∣

1

)]

−
3π2

16
,

wherepFq denotes thegeneralized hypergeometricfunction [1]. The corresponding odd values are
c3,1 = 3L−3(2)/4, c3,3 = L−3(2)−2/3, c4,1 = 7ζ (3)/8 andc4,3 = 7ζ (3)/32−3/16.

Integrals in the Bessel moment study were quite challengingto evaluate numerically. As one
example, we sought to numerically verify the following identity that we had derived analytically:

c5,0 =
π
2

∫ π/2

−π/2

∫ π/2

−π/2

K(sinθ)K(sinφ)
√

cos2θ cos2 φ +4sin2(θ + φ)
dθ dφ ,

whereK denotes the elliptic integral of the first kind [1]. Note thatthis function has blow-up sin-
gularities on all four sides of the region of integration, with particularly troublesome singularities
at (π/2,−π/2) and(−π/2,π/2) (see Figure 1). Nonetheless, after making some minor substitu-
tions, we were able to evaluate (and confirm) this integral to120-digit accuracy (using 240-digit
working precision) in a run of 43 minutes on 1024 cores of the “Franklin” system at LBNL.

4. Conclusion

We have presented here a brief survey of the rapidly expanding applications of high-precision
arithmetic in modern scientific computing. It is worth noting that all of these examples have arisen
in the past ten years. Thus we may be witnessing the birth of a new era of scientific computing, in
which the numerical precision required for a computation isas important to the program design as
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Figure 1: Plot ofc5,0 integrand function.

are the algorithms and data structures. We hope that our survey and analysis of these computations
will be useful in this process.

Efforts to analyze integrals that arise in mathematical physics have underscored the need for
significantly faster schemes to produce high-precision values of 2-D, 3-D and higher-dimensional
integrals. Along this line, the “sparse grid” methodology has some promise [28][31]. Current
research is aimed at evaluating such techniques for high-precision applications.
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