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In order to achieve both fast and coordinated data transfer to collaborative sites as well as to create

a distribution of data over multiple sites, efficient data movement is one of the most essential as-

pects in distributed environment. With such capabilities at hand, truly distributed task scheduling

with minimal latencies would be reachable by internationally distributed collaborations (such as

ones in HENP) seeking for scavenging or maximizing on geographically spread computational

resources. But it is often not all clear (a) how to move data when available from multiple sources

or (b) how to move data to multiple compute resources to achieve an optimal usage of available

resources. Constraint programming (CP) is a technique fromartificial intelligence and opera-

tions research allowing to find solutions in a multi-dimensional space of variables. We present a

method of creating a CP model consisting of sites, links and their attributes such as bandwidth

for grid network data transfer also considering user tasks as part of the objective function for an

optimal solution. We will explore and explain trade-off between schedule generation time and

divergence from the optimal solution and show how to improveand render viable the solution’s

finding time by using search tree time limit, approximations, restrictions such as symmetry break-

ing or grouping similar tasks together, or generating sequence of optimal schedules by splitting

the input problem. Results of data transfer simulation for each case will also include a well known

Peer-2-Peer model, and time taken to generate a schedule as well as time needed for a schedule

execution will be compared to a CP optimal solution. We will additionally present a possible im-

plementation aimed to bring a distributed datasets (multiple sources) to a given site in a minimal

time.
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1. Introduction

1.1 Problem area

Computationally challenging experiments such as the one from the High Energy and Nuclear
Physics (HENP) community have developed a distributed computing approach (a.k.a. Grid com-
puting model) to face the massive needs of their Peta-scale experiments. The era of data intensive
computing has surely opened a vast arena for computer scientists to resolve practical and exciting
problems. One of such HENP experiments is the STAR1 (Solenoidal Tracker at Relativistic Heavy
Ion Collider [1]) experiment located at the Brookhaven National Laboratory (USA).

In addition to a typical Peta-byte scale challenge and largecomputational needs this experi-
ment as a running experiment acquires a new set of valuable experimental data every year, introduc-
ing other dimension of safe data transfer to the problem. From the yearly data sets, the experiment
may produce many physics-ready derived data sets which differ in accuracy as the problem is better
understood and as time passes. Thus, demands for a large-scaled storage management and efficient
scheme to distribute data grows as a function of time, while on the other hand, end-users may
need to access data sets from previous years and consequently access data at any point of the data
production timeline. Coordination is needed to avoid random access destroying efficiency.

The user’s task is typically embarrassingly parallel; thatis, a single program can runN times on
a fraction of the whole data set split intoN sub-parts with usually no impact on science reliability,
accuracy, or reproducibility. For a computer scientist, the issue then becomes how to split the
embarrassingly parallel task intoN jobs in the most efficient manner while knowing the data set
is spread over the world and/or how to spread ’a’ dataset and place best the data for maximal
efficiency and fastest processing of the task.

The purpose of this work is to design and develop an automatedsystem that would efficiently
use all available computational and storage resources. It will relieve end users of making decisions
among possible ways of their task execution (which includeslocating and transferring data to de-
sired sites that appear optimal to user) while preserving fairness. Users’ knowledge of the whole
system and data transfer tools will be reduced just to the communication with the future planner
that will guarantee its decision to spread the task and data sets over chosen sites was, under current
circumstances, the most efficient and optimal.

1.2 Milestones

Rather than trying to solve the problem directly from a task scheduling perspective within a
grid environment, we split the problem into several stages.By isolating the data transfer/placement
and the computational challenges from each other, we get an opportunity to study the behavior of
both sets of constraints separately.

Individual tasks depend on a datasets which size has to be considered as well, since the time
required for its staging and transfers is also significant. Therefore, thefirst milestone is to design
and develop a data transfer planner/scheduler. For a given dataset needed at a given site, its aim
is to create a plan with an objective to prepare and move the files from that dataset within the

∗Speaker.
1http://www.star.bnl.gov
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shortest time. The next requirement is to define and achieve fair share transfers within a multiuser
environment. This means that if one user asked for a huge amount of data to be transferred at a site,
then another user who asked just for one file shouldn’t wait until the first user’s plan is finished.

Thenext milestonegeneralizes data transfer planning between sites. The goalfor this stage is
not to transfer files to one particular site, but do the transfer to several destinations. More precisely,
the planner’s goal is to achieve presence of each file (from user’s input task) at one out of all
possible destinations, while still having the objective inmind, to minimize the finish time of the
last file transfer the user waits for.

The second milestone is highly correlated with thefinal milestone- scheduling the data trans-
fers together with particular tasks (jobs) on a grid. The subtask is not finished after a file is trans-
ferred at a destination site, but when the user’s job executed at the same site (and dependent on this
file) is finished. Thus, the planner still has the freedom of choosing a destination site for each file,
but it has to consider that each site has a specific characteristic of its computational performance.
These attributes include, for example, the number of available CPUs or the actual load, so it can be
more effective to transfer some files over the slower link to the computationally high performance
site (or vice versa). The final objective is to minimize the finish time of the last user’s job. In this
article we focus on the first milestone.

2. Problem formalization

In this section, we will present a formal description of the problem and an approach based on
Constraint Programming technique used in artificial intelligence and operations research. Using
this technique, we search for assignment of given variablesfrom their domains, in such a way that
all constraints are satisfied and value of an objective function is optimal [4].

We will introduce the transfer network consisting of sites holding information which files are
available at the site. For each file we will search for a path leading to the destination and time slots
for each link on the transfer path, when a particular file transfer should occur.

The network consists of a set of nodesN and a set of directed edgesE. The setOUT(n)

consists of all edges leaving noden, the setIN(n) of all edges leading to noden. Input received
from a user is a set of file names needed at a destination sitedest. We will refer to this set of file
names as to demands, represented byD. For every demandd we have a set of sources (orig(d)),
sites where the file (d) is already available. We will use one decision variable forevery demand and
link of the network (edge in graph). The{0,1} variableXde denotes whether demandd is routed
over edgee of the network. The second variablestartde denotes start time of transfer corresponding
to the demandd over edgee. More approaches can be found in [6].

min
Xde,startde

max
e∈E

(

startde +
size(d)

speed(e)

)

︸ ︷︷ ︸

endde

·Xde (2.1)

∀d ∈ D : ∑
e∈∪OUT(n|n∈orig(d))

Xde = 1, ∑
e∈∪IN(n|n∈orig(d))

Xde = 0 (2.2)

∀d ∈ D : ∑
e∈OUT(dest(d))

Xde = 0, ∑
e∈IN(dest(d))

Xde = 1 (2.3)
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∀d ∈ D,∀n /∈ {orig(d)∪dest(d)} :

∑
e∈OUT(n)

Xde ≤ 1, ∑
e∈IN(n)

Xde ≤ 1, ∑
e∈OUT(n)

Xde = ∑
e∈IN(n)

Xde
(2.4)

∀e ∈ E,∀d ∈ D : Xde = 1 :
⋂

[startde,startde +
size(d)

speed(e)
︸ ︷︷ ︸

endde

] = /0 (2.5)

∀n ∈ N,∀d ∈ D : ∑
e∈IN(n)

(

startde +
size(d)

speed(e)

)

︸ ︷︷ ︸

endde

·Xde ≤ ∑
e∈OUT(n)

startde ·Xde (2.6)

Xde ∈ {0,1}
startde ∈ N +

The path constraints (2.2, 2.3, 2.4) state that there is a single path for each demand (path
starting right in one of origin sites, leading to the destination). Equation (2.5) ensures there is only
one active file transfer over every edge in time. The last equation states that a transfer of the file at
any site can start only if the file is already available at the site (Eq. 2.6)(i.e., a transfer of the file to
this site has finished). The objective (Eq. 2.1) is to minimize the latest finish time of transfer over
the whole files.

2.1 Constraint model

For implementation of the solver we use Choco2, a Java based library for constraint satis-
faction problems, constraint programming and explanation-based constraint solving. Among 70
available constraints Choco also provides a rich set of constraints for scheduling and resource al-
location needed for this project. Closer illustration of several Choco uses can be found in [2], [3],
and [7]. In addition, choosing a Java based platform allows for an easier integration of our planner
with the tools currently used in the STAR environment.

Constraints introduced in the previous section were used directly via appropriate Choco struc-
tures, except the equation 2.5, which ensures at most singlefile transfer in any time on any link.
For this, we used thecumulative scheduling constraint and notation of tasks and resources.Tasks
are represented by their duration, by ranges for starting and ending times, and by resource con-
sumption respectively. They are allocated to the resource(s) in such a way that at any time resource
capacities cannot be exceeded.

In our case, each link acts as a separate resource with capacity 1 (unary resource) and each file
demand creates a single task on every resource, which duration depends on the current link speed
(resource characteristic) and consumption of the resourcecorresponds to the value of variableX ,
i.e. no consumption if the transfer path for demand does not include current link (resource), or
consumption 1 otherwise. Figure (1) depicts one possible schedule for transferring a file (F) with
an origin atSite1 andSite2 to destinationDest. Values of theX variables define the path, while the
resource profile for each link is on the right side of the figure.

2http://choco.sourceforge.net
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Site1

Site2

Dest

Site3

Link1Link2

Link3 Link4

X[F ][1] = 0

X[F ][2] = 1

X[F ][3] = 1

X[F ][4] = 0
Link1

Link2

Link3

Link4

F

F

Time

Figure 1: Example of a schedule solution with fileF and its origin atSite1 andSite2. VariablesX represent
selected path transfer, in this case via linksLink2 andLink3. On the right side is a corresponding Gantt chart
of the schedule.

The search strategy, following Choco notation, is split into two goals. First one is to find
assignment forX variables, i.e. paths for each transfer, while the second isto allocate time slot,
assignstart variables, for each transfer at chosen links. For both goalsthe default‘minimum
domain‘ variable selection and‘increasing value‘ value selection heuristic were used.

3. Direct connections

In order to closely analyze the problem and its scale as well as the behavior of the technique
we used, several restrictions that simplify the problem were imposed to the model. We started
to explore the network, where onlydirect connectionsfor data movement are allowed. In other
words, file can not be transferred from its origin to the destination by a path longer than one.

One can think that such a restriction shrinks the search space enormously, but closer look
reveals that the number of possible combinations is still large.

Let’s suppose that we have a network of 5 sites, all connectedto the destination and 100 files
available at each site (|orig( f )| = 5). The number of decision variablesX is therefore 500 (=
|D| ∗ |E|). Even if an upper bound for all possible combinations (2500) is reduced by a propagation
to 5100 (solver has a freedom of 5 choices of an origin for each file), brute-force methods can run
’forever’.

With the intent to stay close to reality, we fixed the number ofsites to 5, which approximately
represents the number of sites currently available in the STAR experiment. For each link we intro-
duced aslowdown factor that influences the transfer time needed to move the data overthis link.
A slowdown factor 1 means that file of size 1 unit can be transferred in 1 unit of time, but with a
slowdown factor 4 only in 4 units of time, etc...

Considering the file demands, we studied the following cases: a) every file is available only
at one particular site; b) file is available at sites given by aprobability function that represents the
reality; c) file is available at all sites. We will name these scenarios asdistinct, weighted and
shared respectively. For all cases we fixed the file size to a 1 unit, i.e. all files have the same size.

3.1 Shared links

So far we have assumed that all links incoming or outgoing from any site have their own band-
width (slowdown factor) that is not affected by other ones. However, in reality this is not always

5
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feasible, since several links leading to a site usually share the same router and/or physical fiber
which bandwidth (capacity) is less than the sum of their own values. Hence, simultaneously one
cannot use all links at their maximum bandwidths. We expressthis constraint by adding an addi-
tional resource per each group of shared links. Capacity of the resource will be the bandwidth of a
shared link or a router, while tasks correspond to the scheduled transfers using any link belonging
to this group with consumptions equal to its slowdown factor.

3.2 Reducing the search time

We studied also several techniques for reducing the time spent during a search.

One of the common techniques for reducing the search tree is detecting and breaking variable
symmetries. This is usually done by adding variable symmetry breaking constraints that can be
expressed easily and propagated efficiently using lexicographic ordering. One idea that can be
applied in the studied case (direct connections and fixed filesize) is following: if two files have the
same origin sets, links selected for the first file and for the second one respectively must be ordered.
The reason behind is that both files must be transferred to thedestination and their size is equal,
it is not necessary to also check the symmetrical swapped case, since the transfer time can not be
shorter.

Another approach is based on the idea, where instead of searching for a global optimal solution
that can be very computing time consuming, we try to find an optimal solution for smaller parts of
the input whereas and due to combinatorial effects, the sum of all times spent to solve a portion
of the plan will be just a fraction of the time needed otherwise for the full plan. This principle
is even more suitable for our needs, since network link speeds vary in time and some sites can
be down after the schedule is produced. Generally, transferring all data files takes a significant
amount of time and, during this time, a lot of environmental conditions (site status, network load)
can be different to the ones the scheduler considered at the beginning. Thus the computed optimal
schedule for the full input is not necessarily the best approach as after a lapse time, it may no longer
be valid due to externally rapidly changing conditions. Chunk scheduling also allows for a better
fair-shareness as new requests by users may be bundled at a later (human reasonable) time without
the need to have all previous requests being honored first (which may happen after a long period of
time, hence a slow reaction time of the system allowing at best a FIFO approach).

One of the requirements for being able to split the input filesinto chunks and producing an
optimal schedule is for each chunk to be resolved independently while propagating the results to
the next chunk. More precisely, one of the results of the scheduler for a given chunk of files is
the information of the computed starting/ending times for each file using particular links. In other
words, to be able to consider the historical usage of the links, the current solver receives times at
which the links will be busy, thus further scheduling for current chunk cannot place file transfer
in these time-slots (information propagation is hence achieve). We implement this by allocating a
“fake tasks” that is, hypothetical tasks with fixed startingand ending times that were propagated
from previous schedules (Figure 2).

Also limits can be imposed on the search algorithm to avoid spending too much time in the
exploration. One of them is fixing the time limit on a search tree. When the execution time is
equal to the time limit, the search stops whether an optimal solution is found or not. One of the
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F1

F1

F2

F2

Fake (fixed) tasksnext chunk

Time Time

Link1

Link2

Link3

Link4

Link1

Link2

Link3

Link4

Input files:
Chunk 1 Chunk 2 Chunk n

Figure 2: Allocating fake tasks according to the previous schedule. Input files are split into batches and
each batch (chunk) is planned separately respecting the results of previous calls.

algorithms we studied was based on this, with a time-limit linearly dependent on the number of
files in a request.

4. Directed (simple) paths

Considering the model, no changes are necessary to perform in order to allow solver search
for transfer paths longer than one. However, since data set transit takes storage space from the
intermediate site, one must be sure that during file transferfrom site A to C, using site B, there is
enough space at the intermediate site B to hold the file in transit.

4.1 Storage capacity

In order to respect the storage restrictions we introduce the next attribute for each site, the
available (free) space, or the storage capacity. All the time during the execution of a schedule, the
storage capacity constraint for each site must be respected.

For each site we consider all possible ways (pairs ofinLink and outLink how a file can be
transferred trough it). Whether or not a pair is really used for the demandd is expressed by
channelingVariable, which also defines the consumption of the task (Figure: 3).

Free space
startd,inLink endtd,outLink

size(d)× channelingV ariable

Time

Figure 3: Storage resource and representation of the consumption of afree space at site during transferring
a file d through it. The resource consumption is defined by start timeof the file transfer overinLink and
finish time of its transfer overoutLink.

If the pair is not used, the consumption is set to zero and storage resource is invariable to this
task, otherwise the consumption is set to the file size.
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5. Comparative studies

In this section we present the performance comparison of several methods of the CSP solver
introduced in previous sections as well as of the Peer-2-Peer simulator. We will also show an effect
of one constraint (storage based) for a simple paths case andan example of the optimal schedule
produced by the solver.

5.1 Peer-2-Peer simulator

To provide a base comparison with the results of our CSP basedsolver we chose to implement a
Peer-2-Peer (P2P) model. This model is well known and successfully used in similar fields like file
sharing, telecommunication, or media streaming. We implemented a P2P simulator by creating the
following work-flow: a) put an observer for each link leading to the destination;b) if an observer
detects the link is free, it picks up the file at his site (link starting node), initiate the transfer, and
waits until the transfer is done. We introduced a heuristic for picking up a file as typically done
for P2P. Link observer picks up a file with a smallest cardinality in the sense of its|origin|, i.e.
the file that is available at the smallest number of sites and if there are more files available with
the same cardinality, it randomly picks any of them. After each transfer, the file record is removed
from the list of possibilities over all sites. This process is typically resolved using distributed hash
table (DHT) [5], however in our simulator only simple structures were used. Finally an algorithm
terminates when all files reach the destination, thus no observer has any more work to do.

5.2 Results

In Figure 4, we show a comparison of times needed to produce the schedules and divergence
of the results (makespan) to the optimal solution between several algorithms. We present the results
only for theweightedcase with direct connections and will only describe the qualitative features
for the other cases. Weights (probabilities) that were usedfor sites were 1.0,0.6,0.01, and 0.01.

The X axes denote the number of files in a request whileY is the time (in units) needed to
generate the schedule and percentage loss on optimal solution. We can see that time to find an
optimal schedule without any additions grows exponentially and is usable only for a limited number
of files, 50 in the weighted case and 20 in the shared case. Thisdifference is induced by a higher
number of possible configurations as long as any site can be selected as an origin. By introducing
symmetry breaking, the solving time is improved, but still not usable for more than 200 files. Using
a time-limit on the other hand we are moving apart from an optimal solution with increasing files
in request, which is even more visible in the shared case. Thus setting the time-limit as a linear
function to the number of files, while using a default search strategy based on minimal domains, is
not sufficient.

In contrast, splitting the input into chunks is giving the best performance results both in the
running time and also in the quality of the makespan. Even scheduling by chunk of size 1, i.e. file
by file, doesn’t produce worse result than using larger chunks – this is explained and mainly due to
the use of the propagation of information from previous steps and link conditions (and statistically
large samples, rendering localized differences impossible to differentiate). While we note as well
the efficacious performance of a simple P2P algorithm, it is worth to mention that this model is

8
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usable only in a direct connection case, while our intent is to study more complex networks with
much more restrictions and hence, this approach cannot be retained to first order.
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Figure 4: Approximation of the solver’s runtime depending on different strategies (left) and corresponding
loss of the makespan comparing to an optimal schedule (right) for the weighted case.

To see the real effect of the storage constraint, in Gantt charts (Figure 5) are shown two sched-
ules (without and with enabled constraint) for the same dataset, considering the funnel network
displayed in the upper part of the figure with a limited available space atSite3 only for one file size
unit. This extreme example permits only a single transfer via siteSite3, that fills available space
until a file is fully transfered to the destinationSite4. After that, the space atSite3 is again released
and another file can go trough.

Site0 Site1 Site2

Site4

Link0 Link2

Link3

Link1

Site3

orig(File0) = {Site0, Site3}
orig(File1) = {Site3}
orig(File2) = {Site0, Site3}
orig(File3) = {Site0}
orig(File4) = {Site0}

slowdown(Link0) = 2
slowdown(Link1) = 2
slowdown(Link2) = 2
slowdown(Link3) = 1
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file

 0

 1

 2

 3

 0  1  2  3  4  5

Li
nk

Time (units)

Schedule (without capacity constraint)

File_0
File_1
File_2
File_3
File_4

 0

 1

 2

 3

 0  1  2  3  4  5  6

Li
nk

Time (units)

Schedule (with capacity constraint)

File_0
File_1
File_2
File_3
File_4

Figure 5: Gantt chart of a schedule without storage constraints (left) and a schedule with storage constraints
(right) generated on the funnel network with limited storage capacity (up). We can see that with a constraint,
the solver is respecting the limited space atSite3, therefore the start of a transfer ofFile4 is postponed till
File3 has reached the destination.
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6. Conclusion

We presented an approach using a Constraint Programming model to tackle the problem of
efficient data transfers/placements and job allocations problem within a distributed computing en-
vironment. Usage of constraints and declarative type of programming offers straightforward ways
of representing many real life restrictions which is also less vulnerable to software coding errors
in an ever expanding framework. On the other hand, since a search space is usually extensive,
methods like symmetry breaking or approximations and understanding the scale of the problem
are fundamental. In this work, we showed that using the scheduling of data transfers by sequence
of smaller chunks gives results close to the optimal solution and provides very acceptable running
time performance. We have further implemented several constraints for dealing with shared net-
work links or limited storage capacities at sites and actualresults are promising. More work will be
needed to demonstrate the full power and usability of constraint programming especially in reduc-
ing search times and using smart heuristics but insofar, ourresults are promising. Not only such
real-life constraints can be easily modeled and the formalism straight forward but the results and
implementation showed a workable proof of principle of thisapproach.
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