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Datasets in modern High Energy Physics (HEP) experiments are often described by dozens or

even hundreds of input variables. Reducing a full variable set to a subset that most completely

represents information about data is therefore an important task in analysis of HEP data. We

compare various variable selection algorithms for supervised learning using several datasets such

as, for instance, imaging gamma-ray Cherenkov telescope (MAGIC) data found at the UCI repos-

itory. We use classifiers and variable selection methods implemented in the statistical package

StatPatternRecognition (SPR), a free open-source C++ package developed in the HEP commu-

nity (http://sourceforge.net/projects/statpatrec/). For each dataset, we select a powerful classifier

and estimate its learning accuracy on variable subsets obtained by various variable selection algo-

rithms. When possible, we also estimate the CPU time needed for the variable subset selection.

The results of this analysis are compared with those published previously for these datasets us-

ing other statistical packages such as R and Weka. We show that the most accurate, yet slowest,

method is a wrapper algorithm known as generalized sequential forward selection ("Add N Re-

move R") implemented in SPR.
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1. Introduction

A crucial task in analysis of High Energy Physics (HEP) data is separationof signal and
background events [1]. In modern HEP analysis, Supervised MachineLearning (SML) techniques
are often used to classify observed events as signal or background.SML is an inductive process
of learning a function from a given set of events typically collected in a training set. Each event
is described by a vector of input variable values (such as momenta, energy, etc.) and a class label
(typically signal and background). The task is to derive a classifier thatis able to predict accurately
class labels for unseen events [2–5]. The measure of the classifier performance is called Figure-
Of-Merit (FOM).

The number of input variables can be very high and the analysis can involve a huge number
of events. Variable Selection (VS) in classification addresses the problemof reducing the variable
set to a subset that most completely represents information about the SML problem [2]. VS is
usually based on filter, wrapper, or embedded approaches. In the filterapproach, the selection is
performed using only information present in the data, without considering information from the
underlying learning algorithm [6]. It can be seen as a pre-processingstep which involves only
intrinsic characteristics of the data. In the wrapper approach, VS optimizesdirectly the induction
algorithm performance to select the best subset of variables [7]. To dothat, many different possible
subsets of variables are generated and, then, evaluated on an independent test set which is not used
during the search. Embedded algorithms are specific to a given algorithm too, but, in contrast
to wrapper algorithms, they incorporate VS directly into the learning process[6]. They typically
select the most important variables according to a variable ranking strategy, where the variable rank
depends on the relevance of this variable in the learning process. Embedded methods are not new:
CART decision trees introduced by Breiman et al. [3] in 1984 already havea built-in mechanism
to estimate variable importance. Since they evaluate the variable importance during the learning
process, they are faster than wrappers. Filter algorithms are usually the fastest, however they are
typically outperformed by methods which take into account the induction algorithm [6, 7].

Removing variables irrelevant for the classification problem can considerably reduce the time
needed by the learning process and gives the chance to interpret and analyze the results more easily
and quickly. Also, some algorithms are not robust with respect to irrelevant or noisy variables and
their performance degrades when the variable pool is polluted with poor predictors.

In this paper we compare the performance of various VS methods applied to the same sets of
data. Section II of the paper describes briefly statistical tools used in our study. Section III shows
the performance of various VS algorithms on several datasets. Section IVdraws conclusions from
this analysis.

2. Statistical Analysis Tools

For the data analysis we use the statistical packages SPR (release 08-00-00) [8], R (release
2.6.2) [9], and Weka (release 3.5.7) [10]. We describe briefly the SPR package. For details on SPR,
R, and Weka see the references above.

SPR is a C++ package for SML. It implements linear and quadratic discriminantanalysis [11],
logistic regression [2], a binary decision split, a bump hunter [12], two flavors of decision trees
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[3, 4, 13] (one for fast machine optimization and the other for easy interpretation by humans), a
feedforward backpropagation neural net with a logistic activation function [14] , several flavors
of boosting [15] including the arc-x4 algorithm [16] , bagging [17] and random forest [18], and
an algorithm for combining classifiers trained on subsets of input variables[19]. The algorithms
listed above can only be used for separation of two classes, signal and background. The package
also includes two multiclass methods [19], one of which is described later in this paper; these
algorithms reduce a problem with an arbitrary number of classes to a set of two-class problems
and then convert the solutions to these binary problems into an overall multi-category classification
label.

In this study, we mainly use tree-based classifiers. Therefore, we briefly review Decision
Trees (DT), Boosted Decision Trees (BDT) and Random Forest (RF). The structure of a single DT
is rather simple. At every step, the algorithm considers all possible binary splits on each variable
and splits on the variable which improves the FOM most. It continues to split the twodaughter
nodes into smaller nodes recursively until a stopping criterion is satisfied. Anode which is not split
into daughter nodes is a leaf. A leaf is labeled as signal if there are more signal events in this node
than background events. Various measures are used to search for optimal decision splits; for details
look elsewhere [13].

DT usually offer a weak predictive power. However, ensemble methods can significantly
improve the accuracy of weak classifiers such as DT by combining and averaging many weak
classifiers. One ensemble method is called boosting. Boosting grows decisiontrees sequentially
increasing weights of misclassified events after every tree and growing a new tree on the reweighted
training data. Classification labels for test data are then computed by taking a weighted average of
all trees grown by the algorithm.

Another ensemble method is RF applied in conjunction with bagging. Many decision trees are
grown on bootstrap replicas of training data, where each bootstrap replica is obtained by sampling
N out of N with replacement. In addition, RF selects input variables for eachdecision split and
thus introduces even more randomness in the algorithm. Classification labels for test data are then
obtained by taking a majority vote of the grown trees.

The SPR classifiers are implemented in a flexible framework utilizing the full power of object-
oriented programming. Because all classifiers inherit from the same abstract interface, one can
easily substitute one classifier for another. This modular approach makes the package scalable for
highly complex applications. For example, SPR is capable of boosting or bagging an arbitrary
sequence of classifiers included in the package.

Besides multivariate classifiers, SPR implements tools for computation of data moments in-
cluding correlations between variables, bootstrap analysis of data and others. SPR is distributed
under General Public License (GPL) off Sourceforge [20]. Support is provided for two versions
of the package: a standalone version that uses ASCII text for input and output of data, and a
ROOT-dependent version [21]. The user can choose between the twoversions during installation
by setting an appropriate parameter of the configuration script. No graphical tools are offered for
the ASCII version of the package; however, one can go through the full analysis chain using ASCII
output from SPR executables, as long as one can tolerate digesting information in the form of text
tables instead of plots. The ROOT version of the package allows the user to call SPR routines from
an interactive ROOT session and plot output of various SPR methods usingsupplied ROOT scripts
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for graphical data analysis. Algorithms for variable selection implemented in SPR are discussed
below.

One of the several VS algorithms for classification implemented in SPR is a quick filter algo-
rithm which ranks variables by their correlation with the class label (we will call it “Correlations”
in this work). The larger the correlation, the more important is this variable forclassification.

Another method for estimation of variable importance is the “Permutations” algorithm im-
plemented in SPR. The idea behind this method is similar to that proposed by Breiman[18] for
out-of-bag estimates. A trained classifier is applied to events not included in the data used for
training and a performance measure such as, e.g., quadratic loss

∆ =
1
N

N

∑
i=1

(yi − f (xi))
2
, (2.1)

is recorded, whereyi is the true class of eventi, f (xi) is the predicted class of eventi, andN is
the number of events. Then, this classifier is applied to these events with classlabels randomly
permuted across each variable in turn and the change in the performance measure due to this per-
mutation for each variable is estimated. The SPR implementation lets the user specifythe number
of permutations across each variable, producing more accurate estimates as this number increases.
Unlike Breiman’s method for the out-of-bag estimate, the classifier is applied to independent test
data; furthermore, an ensemble of weak learners such as, e.g., RF is applied to the test events as a
whole, without evaluating the out-of-bag performance for each tree. The “Permutations” method
is versatile as it can be used with any classifier, not just ensemble members trained on bootstrap
replicas.

For DT and their ensembles, one can estimate variable importance by adding upchanges in
the optimized FOM such as, e.g., the Gini index due to splits imposed on each variable [3]. We
refer to this popular embedded algorithm as “FOM Importance”.

Another algorithm for VS implemented in SPR sorts input variables by their interaction with
the rest of the variables (“Interactions”). Interaction between two variable subsetsS1 and S2 is
defined as:

ρ =
Σi( f (S1i)− f (S1))( f (S2i)− f (S2))

√

Σi( f (S1i)− f (S1))2
√

Σi( f (S2i)− f (S2))2
, (2.2)

where f (S1) and f (S2) are classifier responses at a given point integrated over all the variables not
included in subsetsS1 andS2, respectively. f (S1) and f (S2) are the means off (S1) and f (S2).
The algorithm sorts variables by their interaction in the descendant order.In a stepwise manner it
chooses the variable interacting most with all other variables except those included in the optimal
subset at earlier steps. The order in which the variables are selected gives the variable importance
rank. This algorithm needs to compute K*(K-1)/2 interactions, where K is thedimensionality of
the dataset. For datasets with many variables and a huge number of events, this could be very time
consuming. To reduce the CPU time needed by the algorithm, the SPR implementation allows
the user to choose the number of points, picked randomly from the dataset, used to calculate the
interactions.
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A well-known wrapper VS method is Forward Stepwise Addition (FSA)[22] .This method,
once defined a FOM, adds one variable at a time, trains the classifier, computes the FOM, and
chooses the variable with the greatest improvement in the FOM. This addition continues as long as
it is possible to improve the FOM. A disadvantage of FSA, as implemented in Weka and R, is that
an added variable cannot be removed. For instance, if a variable is partof the best subset with x
variables but is not part of the best subset with x+1 variables, FSA is not able to find the optimal
subset with x+1 variables.

SPR overcomes the disadvantage of FSA by implementing a more flexible generalization of
the forward stepwise addition method, “Add n Rem r”. At each step the subset with the smallest
loss on the test set is selected by adding n and removing r variables, wherethe values of “n” and
“r” are chosen by the user.

3. Tests of Variable Selection Methods

We evaluate several methods implemented in the statistical packages SPR, R, and Weka. The
datasets used in this analysis are taken from the machine learning repositoryof the University
of California at Irvine (UCI) [23]. We include one astrophysics dataset and 4 datasets related to
medical research. We could have as well performed this study using HEP data. However, HEP data
are proprietary and rarely shared among different HEP experiments. Moreover, well documented
applications of SML algorithms to HEP data are hard to find. In contrast, datasets at the UCI
repository are publicly available and were thoroughly studied from the SMLperspective. The
methodology described in this study can be applied to HEP data in exactly the sameway.

If a dataset has more than 1000 events, it is split into a training set (2/3 of theevents) and a
test set (1/3 of the events). The classifier is optimized using the training set and the performance is
evaluated using Receiver Operating Characteristic (ROC) curve for theindependent test set, where
ROC is a graphical plot of true signal rate (y-axis) vs. false signal rate(x-axis). The larger is
the area under the ROC, the better is the classifier performance. For datasets with less than 1000
events, 10-fold cross-validation is used to train the classifier and estimate its accuracy. That is, if
we take k as the number of cross-validation folds, the dataset is split into k folds. Then k-1 subsets
are used for training and the remaining one is used for testing. This is done ktimes, with each of
the k subsets used exactly once as the test set. At the end, the FOM is obtained by averaging the
FOMs from all the folds.

To check how sensitive are results obtained by the same algorithm to the number of cross-
validation folds, we also run 3-fold cross-validation. For any dataset, results from 3-fold and
10-fold cross-validation are consistent within statistical errors. This is why we show only results
obtained by 10-fold cross-validation. The error on the classification accuracy estimate obtained by
cross-validation is computed using:

ε =

√

1
N −1

N

∑
i=1

(ai −a)2 (3.1)

whereai is the classification accuracy for the test subseti, a is the average accuracy and N is the
number of folds. This estimate is biased [24], because it does not account for correlations between
the splits.
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Figure 1: Magic telescope dataset: quadratic classification loss as afunction of the best subset dimension-
ality. The best 6 variables selected are: Alpha, Length, Size, Width, Dist, and Conc.

For the “Interactions” method, we choose 500 points for integration for datasets with more
than 500 events and all points for datasets with less than 500 events.

For each dataset, we find the best classifier among those available in SPR bycomparing their
predictive power. If several classifiers show comparable performance, we choose the fastest.

3.1 Magic Gamma-ray Telescope

This simulated dataset involves a binary classification task with 10 variables and 19020 events
(12332 signal events and 6688 background events). Performance of several classifiers on these data
has been studied in Ref. [25].

We use a RF classifier with 200 trees, at least 1 event per leaf, and with each split chosen
among 3 variables randomly selected at each node.To find important variables, we run “Add 2 Rem
1”, adding 2 and removing 1 variable each time. The best subset with 3 variables is found adding
variables “Size” and “Width” and removing “Length”, a variable that was added at an earlier step
of the forward selection. At all the other steps, the removed variable is oneof two added at the
same step. Quadratic classification loss versus added variables is plotted in Fig. 1.

We conclude that the optimal predictive power can be achieved using only 4variables and use
6 to be conservative. The two ROC curves, for 6 and 10 variables, arein statistical agreement.

Figure 2 shows the ROC curves corresponding to the configurations with six and all the ten
variables.

We then test five other VS methods implemented in SPR: “Add 1 Rem 0”, Interactions, Permu-
tations, FOM Importance, and Correlations. We take the best six variables from each method. In
this case “Add 1 Rem 0” selects the same six variables as “Add 2 Rem 1”, whileall the other meth-
ods select a different subset with 6 variables. The ROC curves for thebest 6 variable obtained by
“Add 2 Rem 1”, by the Interactions method, and by the FOM Importance method(the two methods
with the worst results) are shown in Fig. 3. In this analysis, all methods except FOM Importance
give good results.
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Figure 2: Magic telescope dataset: ROC distributions for the random forest classifier with 10 and 6 vari-
ables. A logarithmic axis is used to magnify the low-acceptance region.

Figure 3: Magic telescope dataset: ROC curves for best 6 out of 10 variables for “Add 2 Rem 1”, Interac-
tions, and FOM Importance. The ROC curves for all other methods lie between the curves for Interactions
and “Add 2 Rem 1”. A logarithmic axis is used to show the low-acceptance region in more detail.

R.K. Bock et al. [25] define LOACC as averageSA for BA=0.01, 0.02, and 0.05, HIACC as the
averageSA for BA=0.1 and 0.2, and Q=SA√

BA
at SA=0.5; whereSA is the signal acceptance andBA is

the background acceptance. In Table 1, the results obtained by an SPR implementation of RF for
this study are compared with those from Ref. [25] obtained by a FORTRAN program RF [26].

3.2 Cardiac Arrhythmia

The task of this analysis is to classify a patient into one of the 16 classes of cardiac arrhythmia.
A slightly modified version of the dataset is used as described in Ref. [27].After removing the 17
variables whose values are always zero for each event and removingthe 14th variable which has a
high incidence of missing values, the final data set has 261 variables, 12 classes (4 classes have no
events in the original dataset), and 420 events. We consider the accuracy of 10-fold cross-validation
as a measure of predictive power of the learning algorithm.
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Table 1: Magic telescope dataset: summary of results in this analysis and in ref. [25].

FOM FORTRAN SPR

LOACC 0.452 0.456±0.006
HIACC 0.852 0.837±0.010
Q 2.8 2.91±0.18

We use the Allwein-Schapire-Singer algorithm [28], which reduces a multi-class problem to a
series of binary problems. The chosen classifier is a DT with at least 15 events per node. To reduce
the multi-class problem to a series of binary problems, the Allwein-Schapire-Singer algorithm uses
an indicator matrix of size C*L (C rows and L columns), where C is the number of classes and L
is the number of binary classifiers. The elements of the indicator matrix can takeonly three values:
1, -1 and 0. In each column, 1 represents signal, -1 represents background, and 0 means that
the corresponding class is not considered in that particular binary classification problem. There
are many ways in which the indicator matrix can be built. In one approach, forinstance, each
class is compared to all others (One-vs-All). This means that the indicator matrix has C binary
classifiers. For each binary classifier, one element is equal to 1 and all others are equal to -1. In
another approach, every binary classifier uses a pair of classes andthe indicator matrix has C*(C-
1)/2 columns. Each column has one 1, one -1 and all other elements are zeros. Both, All-vs-One
and One-vs-One approaches, are implemented in SPR. SPR also lets the user specify an arbitrary
indicator matrix.

8
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Table 2: Indicator matrix used for the arrhythmia dataset. Rows are classes and columns are binary classi-
fiers. Matrix elements can take only three values: -1, 0 and 1,where 1 means that the corresponding class
is treated as signal, -1 as background and 0 means that this class does not participate in this binary problem.
The last row represents weights given to binary classifiers.

row/col 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 0 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
2 -1 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0
3 0 0 0 0 1 -1 -1 -1 -1 -1 -1 -1 -1 0
4 -1 0 0 0 -1 1 -1 -1 -1 -1 -1 -1 -1 1
5 -1 0 0 0 -1 -1 1 -1 -1 -1 -1 -1 -1 0
6 0 0 0 0 -1 -1 -1 1 -1 -1 -1 -1 -1 0
7 0 0 0 0 -1 -1 -1 -1 1 -1 -1 -1 -1 -1
8 0 0 0 0 -1 -1 -1 -1 1 -1 -1 -1 -1 0
9 0 0 0 0 -1 -1 -1 -1 -1 1 -1 -1 -1 0
10 0 0 0 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 0
14 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 1 0 0
16 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 1 0

W 1 7 2 5 1 1 1 1 1 1 1 1 1 5

To classify a test event, we compute quadratic loss for each row of the indicator matrix with
weighted contributions from the constructed binary classifiers:

∆c =
∑L

l=1 I(Icl 6= 0)wl(Icl − f (xl))
2

∑L
l=1 wl

. (3.2)

Each of the L classifiers is used to compute responsef (xl) for a given event, withl=1,2,...,L where
wl is the relative weight for each classifier.Icl is an element of the indicator matrix (c-th row and
l-th column). I(Icl 6= 0) is an indicator function equal to 1 if the indicator expression is true and 0
otherwise. The loss is evaluated for each row of the indicator matrix and an event is classified as
class c if∆c is the least of loss values computed for all rows.

In this analysis we test all three different approaches: One-vs-All, One-vs-One and user-
configured matrix. We obtain the best accuracy by building our own matrix. With the One-vs-All
approach, the results are 2-3 % worse than those obtained with the user-configured matrix. With
the One-vs-One approach, the results are about 10% worse. The user-configured matrix shown in
Table 2 first separates class “Normal” (the most numerous class) from theclasses that are most
likely to be misclassified as “Normal” and then separates the remaining classes among themselves.

The 10-fold cross-validation accuracy for the model with all 261 variables is 75.95%. We
then run the “Add 2 Rem 1” method to search for the optimal subset of variables.

The results of this analysis are shown in Fig. 4. The output of “Add 2 Rem 1” is shown in
Fig. 5.
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Figure 4: Arrhythmia dataset: classification error as a function of the best subset dimensionality. The best
11 variables selected are: AVFA.Q, AVRW.PDiph, DIIIA.JJ, DIIIW.Defl, HeartRate, V1A.Rapex, V3A.Q,
V3A.QRSA, V3A.T, V6A.T, and V6W.R.

Figure 5: Arrhythmia dataset: part of the output of “Add 2 Rem 1” showing which variables are added and
removed at every step.

It displays the order in which the variables are added and removed and thecorresponding
classification loss at each step. Often, at a given step, two new variablesare added and one variable,
which was part of the best subset with lower dimensionality, is removed. That is, for a dataset with
many variables the advantage of a generalized forward addiction selection, which takes into account
the combined effect of several variables, is more evident.

We use the estimates of the classification error obtained by the Add 2 Rem 1 algorithm and
shown in Fig.. 5 to choose the best variable subset. Therefore we cannot use these numbers as

10
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unbiased estimates of the classification error. To obtain unbiased estimates, we retrain the classifier
on the 3-, 4- and 11-variable subsets using new random seeds for the 10-fold cross-validation.
The best accuracy is obtained using 11 variables. The accuracy obtained with 4 variables is not
statistically different at 0.05 level from the model with all 261 variables.

We also analyze the performance of VS algorithms FCBF (Fast Correlation-Based Filter) [29],
ReliefF [30], and CFS-SF [29]. As a classifier, we use a C4.5 decision tree [31] with at least 15
events per node; same as in our previous analysis with SPR. All these algorithms are used in the
Weka environment [10].

In the top sector of Table 3, the accuracy obtained by using the best 11 variables from “Add 2
Rem 1” is compared with the accuracy obtained by using the best 11 variables from “Add 1 Rem 0”
and the best 3 and 4 variables from “Add 2 Rem 1”; as well as with the accuracy of the full model.
In the 2nd section from the top, results of the S methods implemented in Weka are compared with
the result of the 11-variable subset from “Add 2 Rem 1”. In the 3rd section from the top, we give
published results [29] obtained with the same dataset, in a similar analysis configuration, and using
the package Weka. Our results using ReliefF, CFS-SF and FCBF are in good agreement with the
published results. In the bottom section of the table, we compare our results with those obtained
by the FOS-MOD method with the k-nearest-neighbor (k-NN) algorithm [32].

We use a 10-fold cross-validation paired t test [33] to compare the accuracies obtained by
various methods. This test is widely used in machine learning applications and has the advantage
of giving results independent of the specific splitting used to separate training and test sets. To
perform this test, it is necessary to know not only the average accuracyof 10-fold cross-validation,
but also the accuracy of each of ten splits. Since the published results report only the average
accuracy, we can calculate the p-values only for the results obtained by SPR and Weka.

Results of these tests are shown in table 3. “Add 2 Rem 1” and the multi-class algorithm
implemented in SPR give the best accuracy.

3.3 WDBC

Wisconsin Diagnostic Breast Cancer (WDBC) dataset has 569 events, 30 variables, and in-
volves a binary classification task. The goal is to predict whether a tumor is benign or malignant.
We use a random forest classifier with 50 trees, at least 2 events per leaf and 23 variables randomly
chosen for each DT. The accuracy is evaluated using a 10-fold cross-validation.

VS is carried out using “Add 2 Rem 1“, “Add 1 Rem 0”, Correlations, Interactions, and FOM
Importance methods implemented in SPR; as well as with the RuleFit method [34] implemented in
R [9].

11
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Table 3: Arrhythmia dataset: accuracy and p-value obtained using different VS methods. 1st two sectors
from the top: best 11 variables selected by “Add 2 Rem 1” compared with different models (see text for
details). (-) indicates that the best 11 variables model is better than the model it is compared with. P-value
smaller or equal to 0.05 indicates that the model with 11 variables is statistically, at 0.05 level, better. These
results∗ from Ref.[29]. These results † from Ref.[32].

Variable set accuracy (%) p-value

Best 11 Add2Rem1 80.95
Best 11 Add1Rem0 76.19 0.49 (-)
Best 3 Add2Rem1 71.90 0.04 (-)
Best 4 Add2Rem1 75.24 0.22 (-)
All 261 SPR 75.95 0.10 (-)

Best 25 ReliefF 72.14 0.20 (-)
Best 25 CFS-SF 73.33 0.54 (-)
Best 5 FCBF 69.05 0.01 (-)

Full Dataset∗ 68.80
Best 25 ReliefF∗ 68.80
Best 25 CFS-SF∗ 69.02
Best 5 FCBF∗ 71.47

Full Dataset 95-NN † 56.92±7.70
Best 96 95-NN † 56.92±7.70
Full DataSet 7-NN † 65.38±7.20
Best 96 5-NN † 63.65±4.39

According to “Add 2 Rem 1”, a subset of three variables is enough for this classification
problem (see Fig. 6). At each of the first 3 steps, the variable removed isone of the two added at
the same step.

We take the best three variables from each method and compare the results.Table 4 shows
the accuracy of each method as a function of the selected variables as wellas the results of FOS-
MOD published in [32]. For each method, the accuracy is compatible within statistical error with
the accuracy obtained using all variables. “Add 1 Rem 0” chooses different variables from “Add 2
Rem 1”, obtaining a slightly worse accuracy.

“Add 2 Rem 1”, selecting just 3 variables, again outperforms the FOS-MODmethod which
selects 13 variables.
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Figure 6: WDBC dataset: variation of the classification loss as a function of the best subset dimensionality.
The best 3 variables selected are: WorstArea, WorstSmoothness, and WorstConcavity.

Table 4: WDBC dataset: accuracy with different variable sets. Rulefitmethod implemented in R doesn’t
show statistical errors. These results † from Ref. [32].

Variables set accuracy (%)

Full Dataset Random Forest 96.25±3.09
Full Dataset RuleFit 95.78
Best 3 Add2Rem1 96.07±2.77
Best 3 Add1Rem0 94.89±4.29
Best 3 Correlations 93.10±2.65
Best 3 Permutations 96.21±2.63
Best 3 Interactions 93.21±3.65
Best 3 RuleFit 93.85
Best 3 FOM Importance 91.25±3.20

Full Dataset† 97.94±1.67 (5-NN)
13 Variables † 97.04±1.65 (7-NN)

3.4 WBC

Wisconsin Breast Cancer (WBC) dataset is similar to WDBC dataset. It has 699 events (458
are benign samples and 241 are malignant) and 9 variables. We use an AdaBoost classifier with
binary splits with 100 cycles. We compare VS methods “Add 2 Rem 1”, “Add 1 Rem 0”, Corre-
lations, and Interactions in SPR , RuleFit in R, and FOS-MOD [32]. As shown in Fig. 7, “Add 2
Rem 1” selects three variables without loosing predictive power. At eachof the first 3 steps, “Add
2 Rem 1” removes 1 of the 2 variables added at the same step. The FOS-MODmethod selects a
minimum of four variables in order to not loose predictive power.

We, then, take the best three variables subset from “Add 2 Rem 1”, “Add 1 Rem 0” (same
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Figure 7: WBC dataset: variation of classification loss as a function ofthe best subset dimensionality. The
best 3 variables selected are: Uniformity of Cell Shape, Normal Nucleoli, and Bland Chromatin

Table 5: WBC dataset: accuracy with different variable sets. Rulefit method implemented in R does not
show statistical errors. These results † from Ref. [32].

Variables set accuracy (%)

Full Dataset Boosted Decision Split 96.24±2.59
Full Dataset RuleFit 95.82
Best 3 Add2Rem1 95.77±1.71
Best 3 Add1Rem0 95.77±1.71
Best 3 Correlations 95.28±2.54
Best 3 Permutations 95.72±2.98
Best 3 Interactions 94.85±3.03
Best 3 RuleFit 95.61

Full Data Set † 98.16±2.03 (5-NN)
4 Variables † 97.42±2.16 (15-NN)

variables as “Add 2 Rem 1”), Correlations, Interactions, and RuleFit. For each method, the resultant
accuracy is not statistically different from the one obtained using all 9 variables. In this dataset,
which is particularly simple for a binary classification task, all methods give similar results, even
when selecting different variables, as shown in Table 5.

3.5 Colic Horse Data

Colic Horse dataset has 368 events, 22 variables and involves a binary classification task. The
task is to predict whether the lesion is surgical. This dataset has a high number of missing values
which are replaced using the median value of the variable. We used a SPR tree classifier with 15
as minimum number of events per leaf.
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The output of “Add 2 Rem 1” (Fig. 8) shows that 2 variables are enoughto achieve an accuracy
comparable to the one obtained with all the 22 variables. “Add 2 Rem 1”, at each of the first 2 steps,
removes one of the two variables added at the same step.

Figure 8: Colic dataset: variation of classification loss as a function of the best subset dimensionality. The
2 variables selected are: Surgery and Abdomal Distension.

We then evaluate the performance of VS methods implemented in SPR taking the 2 most
important variable from each method. In this comparison, the minimum number of events per leaf
of the SPR tree is taken equal to 1. In Table 6 we show the results of this study(top section
of the table) together with published results obtained using, over the same dataset, different VS
methods and as classifiers ID3 [7] (2nd sector of the table from the top), and C4.5 [35, 36] (3rd and
bottom sector of the table). In this analysis we also see a better performanceof “Add 2 Rem 1”
compared to the other VS methods, since it selects fewer variables than any other published result
while achieving similar accuracy. The variables selected by “Correlations”give a good result too,
whilst “FOM Importance” obtains the worst result among the methods implementedin SPR.

3.6 CPU Time

In Table 7 is shown the CPU time required by each method used to select the variables of the
best subset. When we run the wrapper algorithms, we use the option implemented in SPR which
allows to monitor step by step which variables are added (and also removed in case of “Add 2 Rem
1”) and the corresponding classification loss at each step. That allows toselect the best subset
without waiting that the algorithms find the best subset for each dimensionality.This is particularly
useful in the case of datasets with hundreds of variables, like arrhythmia dataset. “Add n Rem r”
and Interactions in the magic gamma telescope analysis take longer than in any other analysis, this
is why we use a very time consuming classifier, i.e. RF with 200 cycles and 1 minimumevent per
leaf, in conjunction with the largest data set (19020 events). All these experiments are conducted
on a Intel Dual-Core Xeon 2.8 GHz with 1 GB RAM.
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Table 6: Colic dataset: method, accuracy(%), and number of selectedvariables. Results on the accuracy
of VS methods implemented in SPR compared with published results using different VS methods. “Add 2
Rem 1” and “Add 1 Rem 0” select the same variables.

Method accuracy (%) No of sel. feat.

All 85.85±5.25
Add2Rem1 85.85±5.25 2
Add1Rem0 85.85±5.25 2
Correlations 82.05±5.44 2
Permutations 78.59±7.33 2
Interactions 77.43±4.87 2
FOM Importance 61.36±4.21 2

ID3 81.52±2.0 17.4
ID3 HC-FSS 83.15±1.1 2.8
ID3 BFS-FSS Forward 82.07±1.5 3.4
ID3 BFS-FSS Backward 82.61±1.7 7.2

C4.5 GA-Wrapper 82.4 13
C4.5 ReliefF-GA-Wrapper 83.8 10
C4.5 ReliefF 85.3 20
C4.5 All 85.3 22

C4.5-RelFss 85.9 4
C4.5-RelFss’ 84.5 12

4. Summary

We have evaluated the performance of five VS methods implemented in the statistical package
StatPatternRecognition using datasets hosted at the UCI repository. We have compared their per-
formance with that of other methods present in the literature. From these tests, we found that “Add
2 Rem 1” has the best performance. The difference in terms of results between “Add 2 Rem 1” and
the other VS methods considered increases in significance with the complexity of the dataset. On
the other hand, filter and embedded methods are faster. Noticeably faster ifthe dataset set is huge
and the wrapper algorithm has to interact with a time consuming classifier. In general, filter and
embedded methods are often able to achieve good results; however their reliability does not seem
to be guaranteed for every kind of analysis.
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Table 7: CPU elapsed real time in minutes (m) and seconds (s) to selectthe best variables from each dataset
for all the methods used.

Dataset Events Classes Sel. variables/ Tot. variable Program Method Time

Magic 19020 2 6/10 SPR

Add 2 Rem 1 238m
Add 1 Rem 0 97m20s
Correlations 2.53s
Permutations 2m58s
Interactions 360m

FOM Importance 2m05s

Arrhythmia 420 12
11/261 SPR

Add 2 Rem 1 44m30s
Add 1 Rem 0 19m10s

5/261
Weka

FCBF 2.11s
25/261 ReliefF 9.01s
25/261 CFS-SF 2.65s

WDBC 569 2 3/30
SPR

Add 2 Rem 1 7m52s
Add 1 Rem 0 4m29s
Correlations 0.250s
Permutations 0.637s
Interactions 7m20s

FOM Importance 1.02s
R Rulefit 2.81s

WBC 699 2 3/9
SPR

Add 2 Rem 1 12.7s
Add 1 Rem 0 4.90s
Correlations 0.078s
Permutations 2.04s
Interactions 23m20s

R Rulefit 2.24s

Colic 368 2 2/22 SPR

Add 2 Rem 1 2.78s
Add 1 Rem 0 1.89s
Correlations 0.142s
Permutations 0.171s
Interactions 30.86s

FOM Importance 0.071s
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