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1. Introduction

A crucial task in analysis of High Energy Physics (HEP) data is separafi@ignal and
background events [1]. In modern HEP analysis, Supervised Matkiming (SML) techniques
are often used to classify observed events as signal or backgr@Mid.is an inductive process
of learning a function from a given set of events typically collected in aitrgiset. Each event
is described by a vector of input variable values (such as momentayeatrg and a class label
(typically signal and background). The task is to derive a classifieidladiie to predict accurately
class labels for unseen events [2-5]. The measure of the classifierpance is called Figure-
Of-Merit (FOM).

The number of input variables can be very high and the analysis can énadivige number
of events. Variable Selection (VS) in classification addresses the prafflssducing the variable
set to a subset that most completely represents information about the SiMlerpr[2]. VS is
usually based on filter, wrapper, or embedded approaches. In theafieoach, the selection is
performed using only information present in the data, without consideriiognmation from the
underlying learning algorithm [6]. It can be seen as a pre-processemwhich involves only
intrinsic characteristics of the data. In the wrapper approach, VS optimizsgly the induction
algorithm performance to select the best subset of variables [7]. Tleatlamany different possible
subsets of variables are generated and, then, evaluated on an ieleftest set which is not used
during the search. Embedded algorithms are specific to a given algorithnbugan contrast
to wrapper algorithms, they incorporate VS directly into the learning prdégsdJhey typically
select the most important variables according to a variable ranking strategye the variable rank
depends on the relevance of this variable in the learning process. Eetbeddhods are not new:
CART decision trees introduced by Breiman et al. [3] in 1984 already hdwuélt-in mechanism
to estimate variable importance. Since they evaluate the variable importancg the&ilearning
process, they are faster than wrappers. Filter algorithms are usuallgsttest however they are
typically outperformed by methods which take into account the induction algoféh7].

Removing variables irrelevant for the classification problem can coraditiereduce the time
needed by the learning process and gives the chance to interpretapdethe results more easily
and quickly. Also, some algorithms are not robust with respect to irrel@ramoisy variables and
their performance degrades when the variable pool is polluted with pedigpors.

In this paper we compare the performance of various VS methods appliegl sartie sets of
data. Section Il of the paper describes briefly statistical tools used irtumly. sSection Il shows
the performance of various VS algorithms on several datasets. Sectinasé conclusions from
this analysis.

2. Statistical Analysis Tools

For the data analysis we use the statistical packages SPR (released0B{8]-R (release
2.6.2) [9], and Weka (release 3.5.7) [10]. We describe briefly the SieRage. For details on SPR,
R, and Weka see the references above.

SPR is a C++ package for SML. It implements linear and quadratic discrimamahgsis [11],
logistic regression [2], a binary decision split, a bump hunter [12], twafwf decision trees
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[3, 4, 13] (one for fast machine optimization and the other for easy irgttion by humans), a
feedforward backpropagation neural net with a logistic activationtiond14] , several flavors
of boosting [15] including the arc-x4 algorithm [16] , bagging [17] aaddom forest [18], and
an algorithm for combining classifiers trained on subsets of input vari§b®s The algorithms
listed above can only be used for separation of two classes, sighabakdgrbund. The package
also includes two multiclass methods [19], one of which is described later in dipisrpthese
algorithms reduce a problem with an arbitrary number of classes to a sebaflass problems
and then convert the solutions to these binary problems into an overall migigjers classification
label.

In this study, we mainly use tree-based classifiers. Therefore, weybrésflew Decision
Trees (DT), Boosted Decision Trees (BDT) and Random Forest (R¥€)structure of a single DT
is rather simple. At every step, the algorithm considers all possible bipéity en each variable
and splits on the variable which improves the FOM most. It continues to split thelawghter
nodes into smaller nodes recursively until a stopping criterion is satisfiadda which is not split
into daughter nodes is a leaf. A leaf is labeled as signal if there are moid sigants in this node
than background events. Various measures are used to searchifwalajecision splits; for details
look elsewhere [13].

DT usually offer a weak predictive power. However, ensemble methadssignificantly
improve the accuracy of weak classifiers such as DT by combining arrdgang many weak
classifiers. One ensemble method is called boosting. Boosting grows decessrsequentially
increasing weights of misclassified events after every tree and growimg ige on the reweighted
training data. Classification labels for test data are then computed by takiaighted average of
all trees grown by the algorithm.

Another ensemble method is RF applied in conjunction with bagging. Many detisies are
grown on bootstrap replicas of training data, where each bootstrapaépbbtained by sampling
N out of N with replacement. In addition, RF selects input variables for dacision split and
thus introduces even more randomness in the algorithm. Classification labtstfdata are then
obtained by taking a majority vote of the grown trees.

The SPR classifiers are implemented in a flexible framework utilizing the full pofia@bject-
oriented programming. Because all classifiers inherit from the same abistterface, one can
easily substitute one classifier for another. This modular approach makpadkage scalable for
highly complex applications. For example, SPR is capable of boosting oiirtgagg arbitrary
sequence of classifiers included in the package.

Besides multivariate classifiers, SPR implements tools for computation of data rtsoimen
cluding correlations between variables, bootstrap analysis of data ae.0BPR is distributed
under General Public License (GPL) off Sourceforge [20]. Supisgrovided for two versions
of the package: a standalone version that uses ASCII text for inglibatput of data, and a
ROOT-dependent version [21]. The user can choose between theetgions during installation
by setting an appropriate parameter of the configuration script. No gedjibals are offered for
the ASCII version of the package; however, one can go through theenfalysis chain using ASCII
output from SPR executables, as long as one can tolerate digesting ititorinahe form of text
tables instead of plots. The ROOT version of the package allows the usal &R routines from
an interactive ROOT session and plot output of various SPR methodsaigipied ROOT scripts
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for graphical data analysis. Algorithms for variable selection implemented &€ discussed
below.

One of the several VS algorithms for classification implemented in SPR is a giéckafgo-
rithm which ranks variables by their correlation with the class label (we wiilitc&orrelations”
in this work). The larger the correlation, the more important is this variablel&ssification.

Another method for estimation of variable importance is the “Permutations” algoiiti
plemented in SPR. The idea behind this method is similar to that proposed by Bridi&jdor
out-of-bag estimates. A trained classifier is applied to events not includee idatia used for
training and a performance measure such as, e.g., quadratic loss

N
- %igl(yi ()2, (2.1)

is recorded, wherg; is the true class of evemt f(x;) is the predicted class of eventandN is
the number of events. Then, this classifier is applied to these events withatlats randomly
permuted across each variable in turn and the change in the performaaserendue to this per-
mutation for each variable is estimated. The SPR implementation lets the user specifimber
of permutations across each variable, producing more accurate estim#tesraumber increases.
Unlike Breiman’s method for the out-of-bag estimate, the classifier is appliediépéndent test
data; furthermore, an ensemble of weak learners such as, e.g., RHiésldpphe test events as a
whole, without evaluating the out-of-bag performance for each tree.“Parmutations” method
is versatile as it can be used with any classifier, not just ensemble memliees! toa bootstrap
replicas.

For DT and their ensembles, one can estimate variable importance by addohgugpes in
the optimized FOM such as, e.g., the Gini index due to splits imposed on eachled8h We
refer to this popular embedded algorithm as “FOM Importance”.

Another algorithm for VS implemented in SPR sorts input variables by their irtterawith
the rest of the variables (“Interactions”). Interaction between two bhriaubsetss, andS; is
defined as:

o ET(S) T(S))(f(S) T(S)
VE(F(S0) ~ F(S0)2/5i(F(S2) ~ T(S))2

wheref(S) and f(S) are classifier responses at a given point integrated over all the hesriadit
included in subset§; andS;, respectively. f(S;) and f(S) are the means of (S;) and f(S).
The algorithm sorts variables by their interaction in the descendant dndaistepwise manner it
chooses the variable interacting most with all other variables except thdaded in the optimal
subset at earlier steps. The order in which the variables are seleetsdige variable importance
rank. This algorithm needs to compute K*(K-1)/2 interactions, where K iglthensionality of
the dataset. For datasets with many variables and a huge number of evertsult be very time
consuming. To reduce the CPU time needed by the algorithm, the SPR implemenlatic a
the user to choose the number of points, picked randomly from the dataedttaicalculate the
interactions.

; (2.2)
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A well-known wrapper VS method is Forward Stepwise Addition (FSA)[2Zhis method,
once defined a FOM, adds one variable at a time, trains the classifier, tastha FOM, and
chooses the variable with the greatest improvement in the FOM. This addititinees as long as
it is possible to improve the FOM. A disadvantage of FSA, as implemented in WiekR ds that
an added variable cannot be removed. For instance, if a variable isfghg best subset with x
variables but is not part of the best subset with x+1 variables, FSAtiabie to find the optimal
subset with x+1 variables.

SPR overcomes the disadvantage of FSA by implementing a more flexible ligatera of
the forward stepwise addition method, “Add n Rem r”. At each step theesulith the smallest
loss on the test set is selected by adding n and removing r variables, thiberalues of “n” and
“r" are chosen by the user.

3. Testsof Variable Selection M ethods

We evaluate several methods implemented in the statistical packages SPR Welan The
datasets used in this analysis are taken from the machine learning repasitbey University
of California at Irvine (UCI) [23]. We include one astrophysics datasel 4 datasets related to
medical research. We could have as well performed this study using baPHlowever, HEP data
are proprietary and rarely shared among different HEP experimerisedver, well documented
applications of SML algorithms to HEP data are hard to find. In contrast, etatas the UCI
repository are publicly available and were thoroughly studied from the Pklispective. The
methodology described in this study can be applied to HEP data in exactly thexggime

If a dataset has more than 1000 events, it is split into a training set (2/3 ei/éms) and a
test set (1/3 of the events). The classifier is optimized using the trainingdét@ performance is
evaluated using Receiver Operating Characteristic (ROC) curve fandependent test set, where
ROC is a graphical plot of true signal rate (y-axis) vs. false signal (patexis). The larger is
the area under the ROC, the better is the classifier performance. Foetdatéth less than 1000
events, 10-fold cross-validation is used to train the classifier and estimateitsaay. That is, if
we take k as the number of cross-validation folds, the dataset is split intdk fbhen k-1 subsets
are used for training and the remaining one is used for testing. This is diomes, with each of
the k subsets used exactly once as the test set. At the end, the FOM is dlttpiarecraging the
FOMs from all the folds.

To check how sensitive are results obtained by the same algorithm to the mafmtress-
validation folds, we also run 3-fold cross-validation. For any datasstjlteefrom 3-fold and
10-fold cross-validation are consistent within statistical errors. This iswad show only results
obtained by 10-fold cross-validation. The error on the classificationracg estimate obtained by
cross-validation is computed using:

=y Loy a-ap (3.1)
S N-1£ '

whereg; is the classification accuracy for the test subisatis the average accuracy and N is the
number of folds. This estimate is biased [24], because it does not @dooworrelations between
the splits.
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Figure 1. Magic telescope dataset: quadratic classification lossfasction of the best subset dimension-
ality. The best 6 variables selected are: Alpha, Lengtte,SMidth, Dist, and Conc.

For the “Interactions” method, we choose 500 points for integration ftasg#s with more
than 500 events and all points for datasets with less than 500 events.

For each dataset, we find the best classifier among those available in SRpgring their
predictive power. If several classifiers show comparable perfocmame choose the fastest.

3.1 Magic Gamma-ray Telescope

This simulated dataset involves a binary classification task with 10 varialdesS@20 events
(12332 signal events and 6688 background events). Performbaseearal classifiers on these data
has been studied in Ref. [25].

We use a RF classifier with 200 trees, at least 1 event per leaf, and withspét chosen
among 3 variables randomly selected at each node.To find important variakleun “Add 2 Rem
1", adding 2 and removing 1 variable each time. The best subset with dlexriis found adding
variables “Size” and “Width” and removing “Length”, a variable that wdded at an earlier step
of the forward selection. At all the other steps, the removed variable i®btveo added at the
same step. Quadratic classification loss versus added variables is plottgdfin F

We conclude that the optimal predictive power can be achieved using ealjables and use
6 to be conservative. The two ROC curves, for 6 and 10 variable#) atatistical agreement.

Figure[2 shows the ROC curves corresponding to the configurations iwigmg all the ten
variables.

We then test five other VS methods implemented in SPR: “Add 1 Rem 0”, Intemacfe@rmu-
tations, FOM Importance, and Correlations. We take the best six variablasgach method. In
this case “Add 1 Rem 0" selects the same six variables as “Add 2 Rem 1", alhile other meth-
ods select a different subset with 6 variables. The ROC curves fdre$ieb variable obtained by
“Add 2 Rem 1", by the Interactions method, and by the FOM Importance méthedwo methods
with the worst results) are shown in Fig. 3. In this analysis, all methodpe%@M Importance
give good results.
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Figure 2: Magic telescope dataset: ROC distributions for the randmmest classifier with 10 and 6 vari-
ables. A logarithmic axis is used to magnify the low-accepéaregion.
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Figure 3: Magic telescope dataset: ROC curves for best 6 out of 10hasdor “Add 2 Rem 1", Interac-
tions, and FOM Importance. The ROC curves for all other mésHe between the curves for Interactions
and “Add 2 Rem 1”. A logarithmic axis is used to show the loveggaance region in more detail.

R.K. Bock et al. [25] define LOACC as avera8efor Bo=0.01, 0.02, and 0.05, HIACC as the
averageSy for Bo=0.1 and 0.2, and Q7: at Sy=0.5; whereS, is the signal acceptance aBg is
the background acceptance. In Taflle 1, the results obtained by an SRiengation of RF for
this study are compared with those from Ref. [25] obtained by a FORTRalram RF [26].

3.2 Cardiac Arrhythmia

The task of this analysis is to classify a patient into one of the 16 classesd@carrhythmia.
A slightly modified version of the dataset is used as described in Ref. A&2{8r removing the 17
variables whose values are always zero for each event and rentheing" variable which has a
high incidence of missing values, the final data set has 261 variablelskes (4 classes have no
events in the original dataset), and 420 events. We consider the acobil@:fold cross-validation
as a measure of predictive power of the learning algorithm.
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Table 1: Magic telescope dataset: summary of results in this arsafy in ref. [25].

FOM FORTRAN SPR

LOACC 0.452 0456+ 0.006
HIACC 0.852 0837+0.010
Q 2.8 291+0.18

We use the Allwein-Schapire-Singer algorithm [28], which reduces a rolalsis problem to a
series of binary problems. The chosen classifier is a DT with at leasteltissper node. To reduce
the multi-class problem to a series of binary problems, the Allwein-Sch&uirger algorithm uses
an indicator matrix of size C*L (C rows and L columns), where C is the numbelasses and L
is the number of binary classifiers. The elements of the indicator matrix caonfkéree values:
1, -1 and 0. In each column, 1 represents signal, -1 representsrbankig and 0 means that
the corresponding class is not considered in that particular binanjfidasen problem. There
are many ways in which the indicator matrix can be built. In one approachndtance, each
class is compared to all others (One-vs-All). This means that the indicatoixrhas C binary
classifiers. For each binary classifier, one element is equal to 1 anthatkare equal to -1. In
another approach, every binary classifier uses a pair of classébaimdlicator matrix has C*(C-
1)/2 columns. Each column has one 1, one -1 and all other elements ase Beth, All-vs-One
and One-vs-One approaches, are implemented in SPR. SPR also letsrtbgeacdfy an arbitrary
indicator matrix.
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Table 2: Indicator matrix used for the arrhythmia dataset. Rows kgses and columns are binary classi-

fiers. Matrix elements can take only three values: -1, 0 amhkre 1 means that the corresponding class
is treated as signal, -1 as background and 0 means thatdks dbes not participate in this binary problem.

The last row represents weights given to binary classifiers.

rowcol 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 0 11 -1 -1 -1 -1 -1 -1 -1 -1 -1 O
2 -1 11 0 -1 -1 -1 -1 -1 -1 -1 -1 0 O
3 o o o0 o1 -1-1-1-1-1 -1 -1 -1 O0
4 -1 0 0 0121 -1 -1-1 -1 -1 -1 -1 1
5 -1 0 0 012 -11 -1 -1 -1 -1 -1 -1 0
6 o o oo-1-1-11-1-1 -1 -1 -1 O
7 o o o o0-1-1-1-11 -1 -1 -1 -1 -1
8 o o o o60-1-1-1-11 -1 -1 -1 -1 O0
9 o o o o0o0-1-1-1-1-11 -1 -1 -1 O
10 o o o-1-1-1-1-1-1-1 1 -1 -1 0
14 -1 0 001 -1-1-1-1-1 -1 1 0 0
16 -1 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 1 0
W 1 7 2 11 1 1 1 1 1 1 1 5

To classify a test event, we compute quadratic loss for each row of thetodimatrix with
weighted contributions from the constructed binary classifiers:

A, = Sl (la # 0w (lg — F(x)*
i W
Each of the L classifiers is used to compute respdiisg for a given event, with=1,2,...,L where
w; is the relative weight for each classifiég is an element of the indicator matrix (c-th row and
I-th column). I (Ig # 0) is an indicator function equal to 1 if the indicator expression is true and 0
otherwise. The loss is evaluated for each row of the indicator matrix andean is classified as
class c ifA¢ is the least of loss values computed for all rows.

In this analysis we test all three different approaches: One-vs-Ale-@3ROne and user-
configured matrix. We obtain the best accuracy by building our own matrith the One-vs-All
approach, the results are 2-3 % worse than those obtained with theamigjuced matrix. With
the One-vs-One approach, the results are about 10% worse. Theondigured matrix shown in
Table 2 first separates class “Normal” (the most numerous class) frogiabges that are most
likely to be misclassified as “Normal” and then separates the remaining classag themselves.

The 10-fold cross-validation accuracy for the model with all 261 vargalde 75.95%. We
then run the “Add 2 Rem 1" method to search for the optimal subset of Vasiab

The results of this analysis are shown in Hig. 4. The output of “Add 2 Reim ¢hown in

Fig.[8.

(3.2)
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Figure 4. Arrhythmia dataset: classification error as a function eflilest subset dimensionality. The best
11 variables selected are: AVFA.Q, AVRW.PDiph, DIIIA.JJJIWV.Defl, HeartRate, V1A.Rapex, V3A.Q,
V3A.QRSA, V3A.T, V6A.T, and VEW.R.

Multiclass algorithm set to Allwein-Schapire-Singer

variable Add(+)/Rem(-) Loss
HeartRate + 0.37381
V1w.RApex + 0.314286
V1w.RApex - 0.378571
V1A.RApex + 0.316667
V3A.Q + 0.278571
V3A.Q - 0.314286
AVRA.T + 0.27619
V3A.R + 0.242857
V3A.R - 0.297619
V3W.R + 0.245238
V1A.QRSA + 0.235714
V1A.QRSA - 0.269048
V3A.T + 0.235714
DIIW.Q + 0.22619
V3A.T - 0.242857
V3W.s + 0.213889
DIW.TRag + 0.216667
V3W.s - 0.233333
AVRW.TD1iph + 0.216667
V3Ww.s + 0.202186
DIW.TRag - 0.221429
DIW.PDiph + 0.206612
V1A.Q + 0.195055
AVRW.TDiph - 0.228571
DIIA.P + 0.207182
V3A.QRSTA + 0.217033
V1A.Q — 0.233333
DIIIW.Defl + 0.211111
V2W.R + 0.209945
DIIIW.Def1 - 0.219048
V4A.P + 0.211538
V4wW.R + 0.211905
V4W. R - 0.230952

Figure 5: Arrhythmia dataset: part of the output of “Add 2 Rem 1" shagvimhich variables are added and
removed at every step.

It displays the order in which the variables are added and removed arwbtfesponding
classification loss at each step. Often, at a given step, two new vargabladded and one variable,
which was part of the best subset with lower dimensionality, is removed.ig,Har a dataset with
many variables the advantage of a generalized forward addiction se|ectiimh takes into account
the combined effect of several variables, is more evident.

We use the estimates of the classification error obtained by the Add 2 Remrithedgand
shown in Fig.[p to choose the best variable subset. Therefore wetcasmohese numbers as

10
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unbiased estimates of the classification error. To obtain unbiased estimaiestain the classifier
on the 3-, 4- and 11-variable subsets using new random seeds fof-oddlcross-validation.
The best accuracy is obtained using 11 variables. The accuracy exbtaith 4 variables is not
statistically different at 0.05 level from the model with all 261 variables.

We also analyze the performance of VS algorithms FCBF (Fast CorrelBtiegd Filter) [29],
ReliefF [30], and CFS-SF [29]. As a classifier, we use a C4.5 decisgan[81] with at least 15
events per node; same as in our previous analysis with SPR. All thesdhatyoare used in the
Weka environment [10].

In the top sector of Tablé] 3, the accuracy obtained by using the bestizblea from “Add 2
Rem 1" is compared with the accuracy obtained by using the best 11 varfatnhe “Add 1 Rem 0”
and the best 3 and 4 variables from “Add 2 Rem 1”; as well as with theracgwf the full model.
In the 29 section from the top, results of the S methods implemented in Weka are comptired w
the result of the 11-variable subset from “Add 2 Rem 1”. In tfesgction from the top, we give
published results [29] obtained with the same dataset, in a similar analysiswratifig, and using
the package Weka. Our results using ReliefF, CFS-SF and FCBF ar@dhagmeement with the
published results. In the bottom section of the table, we compare our resthtthase obtained
by the FOS-MOD method with the k-nearest-neighbor (k-NN) algorithm.[32]

We use a 10-fold cross-validation paired t test [33] to compare the aciegrobtained by
various methods. This test is widely used in machine learning applicationsaaritidhnadvantage
of giving results independent of the specific splitting used to separaténtyaand test sets. To
perform this test, it is necessary to know not only the average accafd®yfold cross-validation,
but also the accuracy of each of ten splits. Since the published resuttd ceyy the average
accuracy, we can calculate the p-values only for the results obtained®yasd Weka.

Results of these tests are shown in taple 3. “Add 2 Rem 1” and the multi-classttaigy
implemented in SPR give the best accuracy.

3.3 WDBC

Wisconsin Diagnostic Breast Cancer (WDBC) dataset has 569 evéntsriaibles, and in-
volves a binary classification task. The goal is to predict whether a tumenigt or malignant.
We use a random forest classifier with 50 trees, at least 2 events pantea3 variables randomly
chosen for each DT. The accuracy is evaluated using a 10-fold-eatigation.

VS is carried out using “Add 2 Rem 1°, “Add 1 Rem 0", Correlations, tatgions, and FOM
Importance methods implemented in SPR; as well as with the RuleFit method [34] inmézhie
R [9].

11
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Table 3: Arrhythmia dataset: accuracy and p-value obtained usifigréint VS methods. S two sectors
from the top: best 11 variables selected by “Add 2 Rem 1” caegbavith different models (see text for
details). (-) indicates that the best 11 variables modeéiteb than the model it is compared with. P-value
smaller or equal to 0.05 indicates that the model with 11aldeis is statistically, at 0.05 level, better. These
resultsx from Ref.[29]. These results t from Ref.[32].

Variable set accuracy (%) p-value
Best 11 Add2Rem1 805

Best 11 Add1RemO 769 049 (-)
Best 3 Add2Rem1 7.20 004 ()
Best 4 Add2Rem1 734 022 (-)
All 261 SPR 7595 010 (-)
Best 25 ReliefF 724 020 (-)
Best 25 CFS-SF 733 054 (-)
Best 5 FCBF 695 001 (-)
Full Dataset« 68.80

Best 25 ReliefF 68.80

Best 25 CFS-Sk 69.02

Best 5 FCBF« 7147

Full Dataset 95-NN + 582+7.70

Best 96 95-NN t 582+ 7.70

Full DataSet 7-NN t  638+7.20

Best 96 5-NN t 635+4.39

According to “Add 2 Rem 1", a subset of three variables is enough figr dlassification
problem (see Fid] 6). At each of the first 3 steps, the variable remow@kisf the two added at
the same step.

We take the best three variables from each method and compare the r&ablts[4 shows
the accuracy of each method as a function of the selected variables aswiedl results of FOS-
MOD published in [32]. For each method, the accuracy is compatible withintgtatisrror with
the accuracy obtained using all variables. “Add 1 Rem 0" choosegeliffeariables from “Add 2
Rem 1”, obtaining a slightly worse accuracy.

“Add 2 Rem 17, selecting just 3 variables, again outperforms the FOS-M@ihod which
selects 13 variables.

12
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Figure 6: WDBC dataset: variation of the classification loss as a fonatif the best subset dimensionality.
The best 3 variables selected are: WorstArea, WorstSmesthiand WorstConcavity.

Table 4: WDBC dataset: accuracy with different variable sets. Ruta@ithod implemented in R doesn't
show statistical errors. These results T from Ref. [32].

Variables set accuracy (%)
Full Dataset Random Forest 26+ 3.09
Full Dataset RuleFit 958

Best 3 Add2Rem1 9074+ 2.77
Best 3 Add1RemO 989+ 4.29
Best 3 Correlations 930+ 2.65
Best 3 Permutations 9Bl+2.63
Best 3 Interactions 931+ 3.65
Best 3 RuleFit 9385

Best 3 FOM Importance 925+ 3.20
Full Datasett 9P4+1.67 (5-NN)
13 Variables t 904+ 1.65 (7-NN)

34 WBC

Wisconsin Breast Cancer (WBC) dataset is similar to WDBC dataset. 1t9thas\énts (458
are benign samples and 241 are malignant) and 9 variables. We use anostlaBssifier with
binary splits with 100 cycles. We compare VS methods “Add 2 Rem 17, “AdceinR”, Corre-
lations, and Interactions in SPR , RuleFit in R, and FOS-MOD [32]. As shiowFig.[], “Add 2
Rem 1” selects three variables without loosing predictive power. At efthe first 3 steps, “Add
2 Rem 1" removes 1 of the 2 variables added at the same step. The FOSaM®IDd selects a
minimum of four variables in order to not loose predictive power.

We, then, take the best three variables subset from “Add 2 Rem 1Y “A&em 0” (same

13
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Figure 7. WBC dataset: variation of classification loss as a functiothefbest subset dimensionality. The
best 3 variables selected are: Uniformity of Cell Shape nNbiNucleoli, and Bland Chromatin

Table 5: WBC dataset: accuracy with different variable sets. Ruleéithad implemented in R does not
show statistical errors. These results T from Ref. [32].

Variables set accuracy (%)
Full Dataset Boosted Decision Split 28+259
Full Dataset RuleFit 982

Best 3 Add2Rem1 937+ 1.71
Best 3 Add1Rem0O 937+ 1.71
Best 3 Correlations 938+ 2.54
Best 3 Permutations 9R2+2.98
Best 3 Interactions 985+ 3.03
Best 3 RuleFit 9%1

Full Data Set T 986+ 2.03 (5-NN)
4 Variables t 942+ 2.16 (15-NN)

variables as “Add 2 Rem 1”), Correlations, Interactions, and RuleFite&ch method, the resultant
accuracy is not statistically different from the one obtained using all @bks. In this dataset,
which is particularly simple for a binary classification task, all methods give simgkults, even
when selecting different variables, as shown in Tdle 5.

3.5 Colic Horse Data

Colic Horse dataset has 368 events, 22 variables and involves a biassification task. The
task is to predict whether the lesion is surgical. This dataset has a high nafmhissing values
which are replaced using the median value of the variable. We used a SPfassifier with 15
as minimum number of events per leaf.

14
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The output of “Add 2 Rem 1” (Fid]8) shows that 2 variables are endoglehieve an accuracy
comparable to the one obtained with all the 22 variables. “Add 2 Rem 1"chtafdhe first 2 steps,
removes one of the two variables added at the same step.

045 Add 2 Rem 1
0.40
@ 035
S o030
é 0.25 ] ]“ 1
8 020
S 010
0.05
0.00

01234567 8910111213141516171819202122
Subset Dimensionality

Figure 8: Colic dataset: variation of classification loss as a fumctibthe best subset dimensionality. The
2 variables selected are: Surgery and Abdomal Distension.

We then evaluate the performance of VS methods implemented in SPR taking the 2 mos

important variable from each method. In this comparison, the minimum numbeeofseper leaf

of the SPR tree is taken equal to 1. In Talfle 6 we show the results of this @amigection

of the table) together with published results obtained using, over the sansetjatdferent VS
methods and as classifiers ID3 [7]{&ector of the table from the top), and C4.5 [35, 36§ @d
bottom sector of the table). In this analysis we also see a better perforrofiffedd 2 Rem 1”
compared to the other VS methods, since it selects fewer variables thathenypoblished result
while achieving similar accuracy. The variables selected by “Correlatiging’a good result too,
whilst “FOM Importance” obtains the worst result among the methods impleman&eR.

3.6 CPUTime

In Table [} is shown the CPU time required by each method used to select itiglesof the
best subset. When we run the wrapper algorithms, we use the option implenme R which
allows to monitor step by step which variables are added (and also removaskinic’/Add 2 Rem
1”) and the corresponding classification loss at each step. That allogeddot the best subset
without waiting that the algorithms find the best subset for each dimensioridiityis particularly
useful in the case of datasets with hundreds of variables, like arrhytratdageat. “Add n Rem r”
and Interactions in the magic gamma telescope analysis take longer than in angralysis, this
is why we use a very time consuming classifier, i.e. RF with 200 cycles and 1 minewem per
leaf, in conjunction with the largest data set (19020 events). All theseriexents are conducted
on a Intel Dual-Core Xeon 2.8 GHz with 1 GB RAM.

15



A Numeric Comparison of Variable Selection

G. Palombo

Table 6: Colic dataset: method, accuracy(%), and number of seleetgdbles. Results on the accuracy
of VS methods implemented in SPR compared with publishedtsessing different VS methods. “Add 2
Rem 1" and “Add 1 Rem 0" select the same variables.

Method accuracy (%) No of sel. feat.
All 85.85+5.25
Add2Rem1 885+5.25 2
Add1RemO 885+5.25 2
Correlations 8205+5.44 2
Permutations 789+ 7.33 2
Interactions 7TA3+4.87 2
FOM Importance 68B6+4.21 2
ID3 81.52+2.0 174
ID3 HC-FSS 8315+1.1 2.8
ID3 BFS-FSS Forward 87+ 1.5 34
ID3 BFS-FSS Backward 8@1+1.7 7.2
C4.5 GA-Wrapper 82 13
C4.5 ReliefF-GA-Wrapper 88 10
C4.5 ReliefF 853 20
C4.5 Al 853 22
C4.5-RelFss 8% 4
C4.5-RelFss’ 846 12

4. Summary

We have evaluated the performance of five VS methods implemented in the stgiesticage
StatPatternRecognition using datasets hosted at the UCI repository. Wedrapared their per-
formance with that of other methods present in the literature. From thesenedtsund that “Add
2 Rem 1" has the best performance. The difference in terms of restitedre “Add 2 Rem 1” and
the other VS methods considered increases in significance with the compliettity dataset. On
the other hand, filter and embedded methods are faster. Noticeably fabed#taset set is huge
and the wrapper algorithm has to interact with a time consuming classifier.neraefilter and
embedded methods are often able to achieve good results; however libiliedoes not seem

to be guaranteed for every kind of analysis.
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Table 7: CPU elapsed real time in minutes (m) and seconds (s) to shkebest variables from each dataset
for all the methods used.

Dataset | Events| Classes| Sel. variables/ Tot. variable Program Method Time

Add 2 Rem 1 238m
Add 1 Rem 0O | 97m20s
Correlations 2.53s

Magic 19020 2 6/10 SPR Permutations | 2m5as
Interactions 360m

FOM Importance| 2mO05s

11/261 SPR Add 2 Rem1 | 44m30s

Arthythmia| 420 | 12 Add1RemO | 19mlGs
5/261 FCBF 2.11s
25/261 Weka ReliefF 9.01s
25/261 CFS-SF 2.65s

Add 2 Rem 1 7m52s
Add 1 Rem O 4m29s
SPR Correlations 0.250s
WDBC 569 2 3/30 Permutations | 0.637s

Interactions 7m20s
FOM Importance| 1.02s
R Rulefit 2.81s

Add 2 Rem 1 12.7s
Add 1 Rem O 4.90s
SPR Correlations 0.078
Permutations 2.04s
Interactions 23m20s
R Rulefit 2.24s

Add 2 Rem 1 2.78s
Add 1 Rem O 1.89%
Colic 368 2 2/22 SPR Correlations 0.142%
Permutations | 0.171s
Interactions 30.86s
FOM Importance| 0.071s

WBC 699 2 3/9
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