
P
o
S
(
A
C
A
T
0
8
)
0
8
3

MINUIT Package Parallelization and applications
using the RooFit Package

Alfio Lazzaro ∗ab and Lorenzo Moneta a

a CERN, Geneve
b Universita’ degli Studi and INFN, Milano
E-mail: alfio.lazzaro@mi.infn.it, lorenzo.moneta@cern.ch

The fitting procedures are based on numerical minimization of functions. The MINUIT package

is the most common package used for such procedures in High Energy Physics community. The

main algorithm in this package, MIGRAD, searches the minimum of a function using the gradient

information. It requires the calculation of the derivativefor each parameter of the function to be

minimized. This procedure can be parallelized on multi-cores architectures and multiple nodes in

a cluster. We present in this paper an implementation of suchparallelization using OpenMP and

MPI techniques, respectivately. Furthermore we will show applications using the RooFit packages

for Maximum Likelihood fits, and possibility of hybrids between MPI and multi-threads (taking

advantage from multi-cores architecture).

XII Advanced Computing and Analysis Techniques in Physics Research
November 3-7, 2008
Erice, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:alfio.lazzaro@mi.infn.it
mailto:lorenzo.moneta@cern.ch

P
o
S
(
A
C
A
T
0
8
)
0
8
3

MINUIT Package Parallelization and applications using theRooFit Package Alfio Lazzaro

1. Introduction

In general all the methods used in data analysis are based on optimization problems. Depend-
ing on the particular method, the evaluation of a function is required, like the maximum likelihood
function or the expected prediction error function, which has to be optimizedas function of several
free parameters to be determined [1]. In the last years many complex techniques are being used
in the High Energy Physics (HEP) community, like maximum likelihood fits, Neural Networks,
Boosted Decision Tree [2]. These techniques have several advantages with respect to the sim-
ple cut and countanalysis method, such as better discrimination between signal and background
events, the possibility to take in account errors with a better precisions, andto consider correlations
between the discriminating variables used in the analysis.

Increasing the samples of data analyses and using complex algorithms require high CPU per-
formance. In general the requirement on CPU-time depends on:

• number of free parameters to be determined

• number of input events in the process

• complexity of the model to be evaluated

In the last years, vendors like Intel and AMD have not incremented the performance of single
CPU unit as in the past, but they are working on multi-core CPU. Currently wehave up to 6 cores
implemented on one single chip. This fact represents a possible revolution in the development
of new programs. Indeed we can parallelize the code using a shared memory paradigm (such as
OpenMP) obtaining great benefits from new multi-core architectures. So we have to reformulate
some algorithms generally used for HEP data analyses. It is also possible to have faster execution
of the code using the Message Passing Interface (MPI) paradigm, spreading the execution of the
code over several CPUs in a cluster. These techniques of High Performance Computing (HPC) are
well established in other fields, like computational chemistry and astrophysics. In HEP community
there is not such a large use, but in the future it can be an elegant solutionin all the cases where the
data analyses will get more and more complicated.

In the work described in this paper we focus on the parallelization of maximum likelihood
(ML) fitting code, focusing on the likelihood function calculation based on theRooFit package [3],
and optimization of the ML function using the MINUIT package [4]. We will present the techniques
adopted for the parallelization and some speed-up examples.

2. Maximum Likelihood Technique

In this section we briefly introduce the maximum likelihood technique. More details can be
found elsewhere [5].

We consider a random variablex (or a multidimensional random vector ˆx = (x1, . . . ,xn)) dis-
tributed with a distribution functionf (x;θ). We assumef (x;θ) to be well known except for the
parameterθ (or parameterŝθ = (θ1, . . . ,θp)). So, f (x;θ) expression represents, after normalizing
it, hypothesized probability density function (PDF) for thex variable. Then, we suppose to perform
an experiment where a measurement has been repeatedN times, supplyingx1, . . . ,xN values. The

2

P
o
S
(
A
C
A
T
0
8
)
0
8
3

MINUIT Package Parallelization and applications using theRooFit Package Alfio Lazzaro

maximum likelihood method is a technique to estimate the parameter value from this data sample.
Defining thelikelihood functionL as

L (θ) =
N

∏
i=1

f (xi ;θ), (2.1)

to estimate the parameter value we have to maximize this function (i. e. maximum likelihood). We
should underline thatxi are measured and thef (x;θ) function is well-known, soL only depends
on the parameter we want to fit. The evaluation of maximum for likelihoodL as function of the
unknown parameter can be done in a numeric way. Usually, it is used to minimize the equivalent
function− ln(L), thenegative log-likelihood(NLL), or the functionχ2 = −2ln(L). So theNLL
has the form:

NLL = −

N

∑
i=1

(ln f (xi ;θ)) , (2.2)

that is, a sum of logarithms. The evaluation of theNLL used in this paper is done in the ROOT
framework using the RooFit package [6].

3. Optimization procedure: MINUIT

There are several algorithms to find the minimum of a function [1]. Among them, the most
common method used in the HEP community is based on the MIGRAD algorithm inside the
MINUIT package. MIGRAD performs the minimization of a function using thevariable met-
ric method [7]. This method involves the calculation of the derivatives of theNLL for each free
parameter. Since very often we are faced with minimizing a function for which no derivatives are
provided, MIGRAD is able to estimate the derivatives of the function by finite differences. De-
tails of the implementation of the method used in MIGRAD can be found elsewhere [4]. Here we
simply say that for the first derivative we can use the formula

∂NLL

∂ θ̂

∣

∣

∣

∣

θ̂
≈

NLL(θ̂ + d̂)−NLL(θ̂ − d̂)

2d̂
, (3.1)

whereθ̂ is the set of free parameters andd̂ is a “small” displacement (step-sized̂). The value for
d̂ should be chosen as small as possible, but still large enough so that the rounding error in the
computation ofNLL does not become larger than the error introduced by the approximation. This
approximation requires 2p function calls forp free parameters to estimate the first derivative. Then,
of course, the whole procedure has to be repeated for each pointθ̂ of the minimization procedure
until the minimum is reached. Depending of the complexity of theNLL function, this can be very
time-consuming. Furthermore, we should consider that in theNLL function we use PDFs that need
to be normalized for each iteration of the minimization procedure, in case the integral of the PDFs
depends on the free parameters. This requires to calculate the integral ofthe function, which is also
time-consuming. Specific examples of maximum likelihood fits can require several hours [8].

4. Parallelization

Summarizing what we described in the previous sections, we can distinguish three parts of the
maximum likelihood fit procedure:

3

P
o
S
(
A
C
A
T
0
8
)
0
8
3

MINUIT Package Parallelization and applications using theRooFit Package Alfio Lazzaro

1. NLL calculation (implemented in RooFit): the likelihood function is calculated over the input
events. From formula 2.2, this is a sum of terms over theN events (scaling asN);

2. PDFs normalization (implemented in RooFit): it depends on the complexity of the function,
in particular the calculation can be very slow if we do not have an analytical expression of
the integral;

3. minimization procedure (implemented in MIGRAD): it requires the gradient calculation,i. e.
the calculation of the derivatives for several different free parameters values, which depends
on the number of free parametersp to be determined (scaling as 2p).

In principle all these parts can be simply parallelized, using a combination of shared-memory and
MPI paradigms.

Currently there is no implementation of parallelization of the point 2.

For the point 1 the parallelization can be easily achieved splitting the sum term in the NLL.
This is done in RooFit usingfork calls. It allows a sensible reduction of the duration of maximum
likelihood fits in case we run on multi-core machines, requiring one core for each thread. In this
way the speed-up scales almost with a factor proportional to the number of threads. However, this
parallelization used in RooFit is not a shared-memory solution and is therefore limited by the total
number of memory available in the multi-core machine.

The work presented in this paper concerns the point 3, using either a shared-memory solu-
tion (using OpenMP) or MPI on multiple nodes of a cluster. In the latter we also show the hybrid
solution with the parallelization of point 1 on the single node. The parallelization isdone split-
ting the derivative calculation over severalprocesses(OpenMP or MPI processes), balancing the
number of derivatives (which are equal to the number of free parameters in theNLL function) for
each process. This means that the maximum number of processes is equal tothe number of free
parametersp. For example with 10 free parameters and 3 processes, we have four derivatives for
one process, and three each for the other two. Each process has a common serial initialization part.
Then we have the splitting of the derivative calculation, where each process takes care of his group
of derivatives. At the end of this stage, all results are scattered between the processes, so that they
can conclude the minimization iteration (also this part is in common between all the processes,i. e.
each process proceeds in the same way in the minimization). This represents an iteration of the
minimization procedure, which is repeated until the minimum of the function is reached. Figure 1
shows an illustrative schema of this procedure.

It is important to note that the time spent for each iteration depends on the slowest process,
i. e. the process with the most derivatives to calculate. This fact suggests the maximum number
of processes where we can see an effective speed-up. For example, with 10 free parameters, there
is at least one process with 2 parameters when we require between 5 and 9processes in the paral-
lelization. Of course increasing the number of processes means overhead for the synchronization
and communication between the processes. Therefore a good speed-upcan be reached in case of
large number of free parameters and reasonable low number of processes.

In the following example reported, we used MINUIT2, which is just the C++ object-oriented
version of the original MINUIT [9], and RooFit implemented in ROOT v5.20.

4

P
o
S
(
A
C
A
T
0
8
)
0
8
3

MINUIT Package Parallelization and applications using theRooFit Package Alfio Lazzaro

!"

#$%&$"

'(&)$"($*&%+,-"

."

!" !"

#%/*"0,&1"2,&"*%34"
5&,3*))6"

7-(+%8(9%+,-",2"$4*"
/(-(/(9%+,-")$*5""

#58($",2"
5%&%/*$*&)"

."

!"

:%34"5&,3*))";,*)"
$4*"3%83<8%+,-",2"%"
)5*3(=3")<>?)%/58*"

,2";*&(@%$*)"

#3%A*&?B%$4*&"
,2";*&(@%$*"

@%8<*)6"*%34"CDE"
4%)"%88"@%8<*)"

!"

."

!"

#%/*"0,&1"2,&"

%34"5&,3))6"

C,-38<)(,-",2"$4*"

/(-(/(9%+,-")$*5"

#$%&$"

#*3,-;"($*&%+,-"

Figure 1: Scheme of the parallelization of the minimization procedure (see text for details).

Figure 2: Speed-up plot when using OpenMP parallelization of the minimization procedure (blue circles)
and of theNLL calculation (brown squares). Note that the plateau when using 10–18 cores corresponds to
at least one process with 2 derivatives to calculate, so no increase in the speed-up is expected (see text for
more details).

In the figure 2 we show the speed-up using OpenMP for a test done with 50Gaussian un-
correlated variables, 20 free parameters and 10,000 events, running on a machine with 24 cores
and 64 GB shared memory1. For comparison in the same plot we show the speed-up that we
can reach using the parallelization of theNLL calculation. There is a better response for this sec-
ond parallelization, which is reasonable since the parallelization of the minimizationprocedure has
more sequential part of the code and does not scale well in case of small number of parameters (as
mentioned above).

1This machine has been provided by OpenLab at CERN.

5

P
o
S
(
A
C
A
T
0
8
)
0
8
3

MINUIT Package Parallelization and applications using theRooFit Package Alfio Lazzaro

Nodes
0 2 4 6 8 10 12 14 16

sp

ee
d-

up

0

2

4

6

8

10

12

14

16

18

20

MPI/(pthreads*4)
MPI/(pthreads*2)
MPI

m

ax
 p

ar
am

et
er

s
/ n

od
e

0

5

10

15

20

25

30

29 parameters

Figure 3: Speed-up plot when using MPI parallelization of the minimization procedure (black circles) for
a function with 29 free parameters. Blue line (referring to right y-axis) refers to the maximum number of
derivatives calculate for each node. The other two lines refer to the hybrid case of MPI and RooFitNLL
parallelization requiring 2 (green squares) and 4 (red triangles) cores for each node. Note the 4 cores is the
maximum number available for each node in the cluster used for the test.

Concerning the parallelization using MPI, the tests have been done on an IBM cluster with
dual-core CPUs and 2 slots per node2, i. e. 4 cores per node, with 8 GB/node of shared memory.
In total the cluster has 1280 nodes, which means 5120 cores in total. The internal network for the
communication is provided by Infiniband (5 GB/s). All the MPI calls are declared in a specific
class of the MINUIT2 package. In particular for the communication and synchronization we use
the MPIAllgatherv call. In figure 3 we show the speed-up for a test with 10,000 events, 4
variables, and 29 free parameters. In the same plot we show the case when we also apply the
hybrid parallelization forNLL calculation in each node.

5. Conclusion

The solutions adopted for paralellization give good results for the tests done. Further improve-
ments can be the parallelization of the integral calculation of the PDFs and the possibility to have
also theNLL calculation done on multiple nodes using MPI. The work presented in this paper have
required changes in the RooFit and MINUIT2 packages, which will be part of the future release of
ROOT. The parallelization of the minimization procedure implemented in MINUIT2 can be used
in all domains where it is required such a procedure,i. e. not onlyNLL fits, hence in general in data
analysis code based on MINUIT.

6. Acknowledgments

Authors thank CINECA HPC group for their kind support during the tests done on his cluster

2The cluster has been provided by CINECA HPC group at Bologna, Italy.

6

P
o
S
(
A
C
A
T
0
8
)
0
8
3

MINUIT Package Parallelization and applications using theRooFit Package Alfio Lazzaro

and OpenLab group to provide the possibility to use his test machine. Alfio Lazzaro thanks Filippo
Spiga for his suggestions about the MPI parallelization.

References

[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,Numerical Recipes: The Art of
Scientific Computing, Third Edition, Cambridge University Press (2007).

[2] J. Friedman, T. Hastie, R. Tibshirani,The Elements of Statistical Learning, Springer (2001).

[3] See the web page of the RooFit package:URL:http://roofit.sourceforge.net/.

[4] F. James,MINUIT - function minimization and error analysis, CERN Program Library Long Writeup
D506 (1972).

[5] G. Cowan,Statistical Data Analysis, Clarendon Press (1998).

[6] See the web page of the ROOT project:URL:http://root.cern.ch/.

[7] W. C. Davidon, SIAM J. Optim.1, 1, pp. 1-17 (1991).

[8] B. Aubertet al., BABAR Collaboration, Phys. Rev. Lett.98, 211802 (2007).

[9] M. Hatlo et al., IEEE Transactions on Nuclear Science52-6, 2818 (2005).

7

