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The paper presents the hypervolume visualization techniques of multidimensional nuclear 
spectra. The geometrical imagination of multidimensional space, its evolution from three-
dimensional to four-, and five-dimensional spaces is presented as well. The principles of 
techniques to determine the occlusion and invisibility are outlined. The paper focuses on 
presentation of nuclear spectra. However, the majority of algorithms can be successfully applied 
for visualization of other types of data as well. 

 

 

 

 

 

 

 

 

 

 

 

XII Advanced Computing and Analysis Techniques in Physics Research 
Erice, Italy 
3-7 November, 2008 
 

                                                 

 
1  Speaker 

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 



P
o
S
(
A
C
A
T
0
8
)
0
9
7

Visualization of multidimensional histograms… Miroslav Morháč 

1. Introduction 

Most scalar visualization techniques use a consistent approach across one-, two-, or three-
dimensional fields. A scalar variable is a single quantity, in the case of nuclear spectra - counts, 
which can be represented as a function of independent variables - particle energies [1, 2]. The 
goal of the paper is to propose a technique that allows one to localize and scan interesting parts 
(peaks) in the spectra of higher dimensions. Moreover it should permit to find correlations in the 
data, mainly among neighboring points, and thus to discover prevailing trends around 
multidimensional peaks. 

2.Hypervolume visualization 

This kind of visualization is designed to provide simple and fully explanatory images that 
give comprehensive insight into the global structure of scalar fields of any dimension [3]. 
Projection of m-dimensional (mD) space to two-dimensional space can be defined as mapping 

( )2∏ ℜ →ℜm . 

In what follows, we shall consider only particle scattering display mode. The position of the 
channel x1, …, xm, on the screen is given by the linear transformation 
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1, mn n…  are the numbers of nodes of a regular grid and X1, …, Xm are the channels of 
mD spectrum. 

The transform coefficients t1 i ,  t2 i (where i = 1, 2, …, m + 1), reflect shifts, in both 
original and transformed space, scaling in all dimensions, as well as rotations in any direction. 
Shifts and scaling in mD space are analogous to that in conventional visualization techniques in 
1D, 2D, or 3D spaces.  
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2.1 Geometrical imagination of multidimensional space – evolution from three-dimensional to 
four-dimensional space 

We can start by adding v-axis to three-dimensional space (Fig. 4 left). By moving the cube 
in the fourth dimension v we get the four-dimensional space (Fig. 4 middle) and by removing 
invisible vertices and by coloring the visible planes we get more illustrative representation of 
the four-dimensional space (Fig. 4 right). In 4-dimensional space v-axis is orthogonal to the 
axes x, y and z. In 2-dimensional projection its position depends on the rotation of original 4-
dimensional space. 

   
Fig. 4 Addition of v-axis to three-dimensional space (left), extension of three-dimensional space 
to four-dimensional by moving the cube in the fourth dimension (middle), and four-dimensional 
space (right). 

2.2 Five-dimensional space 

We can proceed in analogous way by adding w-axis to four-dimensional space and by 
moving the four-dimensional hypercube in the fifth dimension w. We get the five-dimensional 
space (Fig. 5).  

  
Fig. 5 Five-dimensional space with removed internal vertices and edges (left) and representation 
of five-dimensional space. 

2.3 Occlusion and invisibility 

In the previous sections we mentioned that some vertices and edges are “invisible”. We 
automatically assumed the conception of real three-dimensional space. From the human point of 
view, this is the highest dimension we can imagine, therefore when projecting data from 3-, 4-, 
5-, …, m-dimensional array we need to transform them not only to two-dimensional plane 
(screen) but also to three-dimensional space. Analogously to (1) the transformation to 3-
dimensional space is calculated 
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In three-dimensional space we can decide which vertices are visible and which are not. Let 
us define 3D space with x y plane coincident with 2D space (screen) (see Fig. 6). Hence the z-
axis gets automatically to be orthogonal to the screen. Then z-coordinates of the vertices give 
measures of distances from the observer. From them we can also determine which vertices are 
inside of the 3D space and which are on its surface. 

 
Fig. 6 Principle of the projection of 3D data to 2D (screen) and 3D spaces. 

 
Fig. 7 Principle of the projection of 4D data to 2D (screen) and 3D spaces. 

 
Fig. 8 Principle of the projection of 5D data to 2D (screen) and 3D spaces. 

Let us transform all vertices of 3D, 4D, 5D … mD data field to 2D (screen coordinate) and 
3D spaces. From the z-coordinates of the transformed vertices, according to (2), we determine 
the backmost vertex (point), i.e., the point with the smallest value of z-coordinate (see Figs. 6, 7, 
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8). It is the farthest point from the observer. It will be the starting point of the iterations in all 
dimensions. To the backmost vertex we determine neighboring vertices in the dimensions x, y, 
z, v, w, … and we arrange them according to increasing value of z-coordinate to vector [d1, d2, 
…, dm ]. Following this algorithm the points (channels) that are closer to the observer overlap 
the points that are farther. 

2.4 Examples of four-dimensional spectra 

To illustrate the representation of four-dimensional data we present the experimental 
nuclear spectrum with peaks and background in Fig. 9. The diameters of spheres represent the 
counts in the corresponding channels in all figures. Fig. 10 presents the synthetic four-
dimensional Gaussians (left) and four three-fold slices in experimental four-dimensional γ-ray 
spectrum (right). 

  
Fig. 9 Four-dimensional experimental spectrum with raster (left) and without raster (right). 

 

  
Fig. 10 Five four-dimensional Gaussians with sigma = 1.5 (left) and four three-fold slices in 
experimental four-dimensional γ-ray spectrum (right). 

2.5 Examples of five-dimensional spectra 

The five-dimensional Gaussians are presented in Fig. 11. In Fig. 12 we present Gaussians 
with ridges (left) and 10 five-dimensional Gaussians (right).  
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Fig. 11 Five-dimensional Gaussian. (left) and five-dimensional Gaussian with marker and raster 
(right). 

  
Fig. 12 Five-dimensional Gaussian with ridges (left) and 10 five-dimensional Gaussians (right). 

3.Conclusions 

Conventional volume rendering techniques are not extensible to higher dimensions. The 
algorithm of hypervolume visualization is presented in this contribution. It is based on particle 
scattering display mode. This technique is extensible to any dimension and makes it possible to 
provide user with compact global view of multidimensional data. 

The visualization algorithms presented have been implemented in the data acquisition, 
processing and visualization system DaqProVis which is being developed at Institute of Physics, 
Slovak Academy of Sciences [4]. 
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