PROCEEDINGS

OF SCIENCE

EVE - Event Visualization Environment of the ROOT
framework

Matevz Tadel* CERN

E-mail: matevz.tadel@Rcern.ch

EVE is a high-level environment using ROOT’s data-processing, GUI and OpenGL interfaces. It
can serve as a framework for object management offering hierarchical data organization, object
interaction and visualization via GUI and OpenGL representations and automatic creation of 2D
projected views. On the other hand, it can serve as a toolkit satisfying most HEP requirements,
allowing visualization of geometry, simulated and reconstructed data such as hits, clusters, tracks
and calorimeter information. Special classes are available for visualization of raw-data. EVE is
used in the ALICE experiment as the standard visualization tool, ALEVE, using the full feature
set of the environment. In the CMS experiment, EVE is used as the underlying toolkit of the
cmsShow physics-analysis oriented event-display. Both AEVE and cmsShow are also used for

the online data-quality monitoring.

XII Advanced Computing and Analysis Techniques in Physics Research
November 3-7, 2008
Erice, Italy

“Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:matevz.tadel@cern.ch

EVE - Event Visualization Environment of the ROOT framework Matevz Tadel

1. Introduction

Visualization of detector geometry and event data plays an important role over a large spec-
trum of activities of a HEP collaboration, including early planning of experiments, debugging of
simulation and reconstruction code, detector calibration, physics analysis and online monitoring.
The extent of visualization use-cases implies that the visualization framework of an experiment
must be able to handle all kinds of experiment data and present them together in a unified envi-
ronment. This requirement is the main problem of visualization infrastructure, not encountered by
other segments of the offline code that typically only operate on one type of input data and produce
another one as their output.

Further complication of the matter arises due to the fact that visualization is expected to be
both completely separate from the general offline framework as well as to be able to provide full
backward navigation from derived physics objects, like jets or tracks, to more elementary ones,
like clusters, and even further to raw-data or simulation records. The first expectation requires the
experiment-data, or at least part of it, to be readable and interpretable with a subset of the full
offline framework — the thinner this layer is, the better. The second expectation obviously requires
significant presence of the core framework and, if interactive access to the algorithms is required,
even complete integration of visualization code into the offline framework.

All these considerations lead to the conclusion that it is impossible to construct a single visu-
alization program that would satisfy all the needs of a HEP collaboration. Nevertheless, there is a
significant overlap of visualization elements and functionality that is common to all visualization
tools, not only within one collaboration, but also within the HEP community as a whole. These
common elements are exactly the targeted scope of EVE — the event visualization environment of
the ROOT framework[1].

1.1 EVE overview

EVE uses ROOT GUI and OpenGL modules for its data presentation and interaction layer.
On top of those it provides a visualization object-management system that integrates deep into the
OpenGL infrastructure to provide for fast updates of graphical windows with minimal overhead
as well as to allow fine-grained access to displayed objects and even to object-components. The
visualization classes are derived from a common base class, TEveElement, that provides support
for building of overlaid object-hierarchies - each element can have children and can, in turn, be
registered as a child to arbitrary number of other elements.

Much of the EVE higher-level functionality, like selection-management and 3D-scenes/viewer
management, is implemented as EVE classes. This facilitates the interaction with these objects
(they are visible within the same GUI as the visualization elements) and allows the described ele-
ment aggregation mechanism to be used on the framework level. For example, to add an element
into a 3D scene, it is enough to drag’n’drop it into the element representing the scene.

All EVE visualization classes allow backward references to the experiment data they are rep-
resenting by providing a TRe f per visualized entity. This can correspond to an EVE element (e.g.
TEveTrack) or to an entry in an element if its class is actually a container (e.g. TEvePointSet,
used to represent hits, clusters and other point-like data). In this way the visualization classes can be
completely separated from the experiment framework and still provide full backward-navigation.

EVE - Event Visualization Environment of the ROOT framework Matevz Tadel

1.2 Development history

Development of EVE started in 2005 with prototyping of the visualization elements and selec-
tion algorithms within the GLED framework [2]. This led to the selection of OpenGL as the only
supported drawing library. In 2006, the first prototype using the ROOT graphical user-interface
and 3D graphics was assembled using AliRoot, the offline framework of the ALICE collaboration,
as the development platform [3]. OpenGL support in ROOT has also been augmented as a part of
this development [5].

In December 2007, EVE was introduced into ROOT as a standard module. Since then, several
experiments besides ALICE have already started using it, including CMS, FAIR, NA-62 and T2K.
EVE reached maturity towards the end of 2008 and no major changes in the interfaces are foreseen.
Several extensions and optimizations of the current functionality are planned for 2009 and 2010.

2. EVE architecture

The components of EVE can be put into three main categories, based on the role they play
within the framework.

1. Application core consists of general services exposed to users via an instance of the TEve—
Manager class and static functions of the TEveUtil class. Together, they provide the fol-
lowing main functionalities:

- management of object-browsers, 3D scenes and 3D viewers;

- management of ROOT GUI windows in arbitrary configurations of tabs, stacks and
main-frames;

- registration of visualization objects;
- selection management;

- data-base of visualization parameters that can be assigned to elements based on their
type (a string tag);

- event management & navigation;l

execution environment for CINT scripts.

2. Framework base-classes implement the low-level functionality of visualization and GUI
objects that are used by the application core to perform object and state management as well
as to provide a reasonable level of feedback to the user (e.g. object name, title and color,
object highlighting and selection, object inspection via GUI and command-line interfaces).

3. Visualization classes serve as initial building blocks for simple visualization tasks, as base-
classes for more advanced visualization classes, or simply as examples of framework usage.
The standard HEP visualization classes (geometry, points, tracks and calorimetry) are dis-
cussed in Sec.3. Most of these classes can be automatically projected into 2D views (r — ¢
and p — z), see Sec.5. Classes for raw-data visualization are described in Sec.4.

'Due to the variability of input-data, only a very basic infrastructure can be provided for this task.

EVE - Event Visualization Environment of the ROOT framework Matevz Tadel

All classes in this category are equipped with accompanying GUI editors and OpenGL ren-
dering classes. Following ROOT’s naming convention, the TEveTrack class has the accom-
panying GUI implemented in class TEveTrackEditor and the GL drawing functions in
class TEveTrackGL. For details of this mechanisms see [5] and [6].

3. Standard visualization classes

In this category we describe the traditional event-visualization classes of EVE that must be
present, in one form or another, in any event-display program. These programs are typically used
by physicists, to gain insight into the structure of the detector and the topology of events, and by
developers of the experiment software-frameworks for visual debugging of simulation and recon-
struction algorithms.

3.1 TEveElement — the visualization base-class

TEveElement is the base-class of all visualization classes in EVE. It provides the interfaces
between the objects and the application core, the 3D rendering system and the GUI. Each render-
element can have an arbitrary number of children and also holds lists of its parents and GUI rep-
resentations, so that the update requests can be propagated properly. All elements are reference
counted and by default auto-destructible.

3.2 Geometry

ROOT includes a native geometrical modeler, TGeo, that provides methods for construction
of detector geometries, particle tracking and volume visualization via the TGeoPainter class [7].
EVE supports two methods for geometry visualization: the first one uses TGeo directly and the
second one presents pre-extracted volume-shape tessellations.

3.2.1 Display of full TGeo geometries

EVE allows simultaneous display of several independent geometry sub-trees, possibly belong-
ing to different geometries, via a wrapper-class TEveGeoTopNode. It encapsulates a reference to
a geometry-manager and to the top-node to be displayed, as well as to the visualization parameters
supported by TGeoPainter, including the depth of geometry-tree traversal. During the actual
painting, the necessary global variables are set-up and the control is passed to the TGeoPainter.

The TEveGeoNode class allows further link between TGeo and EVE by providing represen-
tation of children nodes in the EVE object browser. Users can select individually which nodes to
draw, block the descent of the painting algorithms from a given node, and change node and volume
colors. Example of such geometry is shown in Fig.1.

3.2.2 Display of extracted shape-data

In event-display applications, one is usually not interested in the details provided by the full
geometry description, especially as it includes all the support structures, down to minute de-
tails. Instead, one prefers to see a carefully selected set of relevant sensitive volumes, or even
just the envelopes of whole sub-detector systems. Such selection can be stored as a hierarchy of

EVE - Event Visualization Environment of the ROOT framework Matevz Tadel

Browser Eve | Elle Camera Help
GLViewer

.
Omstrsm
OFsrase |

S G

Nans.
GLViewer:TGLSAViewer

~Clip Type
€ None.
C Plane
& Box

1 Cip avay nste
= dtin viewer
= showin Viewer
cenerx [5755 3]
Corter v [596755 3
corterz [7575 3
Longt x [127556 2
Longiny [127355 2]
Lengnz 7555 2]
bonly

B |

Conmana |

Command (ocal) [=

1

Figure 1: Geometry of the ATLAS detector in EVE. The object browser shows the node hierarchy. Clipping
box is used to provide view into the central region of the detector.

TEveGeoShape objects that incorporate a TGeoShape data, its global transformation matrix, color
and visibility flags. It can be stored in an independent ROOT file and typically requires only 1% of
the space required for the full geometry. For examples, see Fig.2 and Fig.3.

3.3 Hits & clusters

Hits and clusters can be visualized by using the TEvePointSet class, holding an array of
3D points that can be rendered with various marker styles and colors. To allow for backward-
navigation, a reference to an external object (via ROOT’s TRef class) can be specified for each
point (optionally a TEvePointSet can own the reference objects and delete them upon its de-
struction).

To fill the data, a sequential method can be used, specifying coordinates and an external ref-
erence for each point in turn, or use a special TEvePointSelector class that invokes the full
ROOT machinery for selecting data from TTree’s.

The TEvePointSetArray class implements an interactive 3D-histogram by encompassing
an array of TEvePointSet’s and providing a special filling method that allows a user to ascribe
an additional value to each point, like deposited charge for a hit or sum of signals for a cluster.
After that, the user can interactively select the range of that value and thus control which subsets
are actually displayed. Currently, a single additional parameter is supported.

Several examples can be seen in Fig.2 and Fig.3.

3.4 Trajectories, particles & tracks

The TEveTrack class can be used to represent particle trajectories. An arbitrary number

EVE - Event Visualization Environment of the ROOT framework Matevz Tadel

of control-points can be specified along the track, to mark one of: a) position/momentum ref-
erence, b) daughter creation point, ¢) decay point, and d) reconstructed cluster. Extrapolation
and interpolation in an arbitrary, user-provided, magnetic field is supported by the service class
TEveTrackPropagator, which also contains general track visualization parameters (e.g. maxi-
mum radius and z-coordinate of extrapolation, required precision, etc). Usually, all tracks from a
given data-source reference the same track-propagator object, thus allowing the general parameters
to be edited for all of them simultaneously.

Tracks can be put into a hierarchical structure (as required for display of kinematics) or com-
bined to represent composite reconstructed physics objects like VO’s, kinks and resonances. A
collection of tracks can be put into a TEveTrackList object that provides control over common
track rendering parameters and interactive selection of displayed momentum ranges.

Several examples are shown in Fig.2 and Fig.3. Note also the object browsers on the left side

of the shown windows and track highlighting that can be used to display track-parameters and other
relevant information in a tool-tip.

Bowser Eve | i Camera o Erowser Eve |l Camera Eelp

€ ies | Macros| GLViewer | piteLview | Datasaecton| o isograms

tViower | SpitaLview | Datssetecton] 04 hstograns |
L

AT
S R0

W woten 210
S Pwrms
A Temna -
TR |2 mrorni00) K
wpesa ieO—
~Pwosea style | ots | B
o-En e Name
@wssa ITS stani-sone g TEVeTrchLis
wpenna TeveEiomant
A eopone Show: |7 Self & Children
Ade e
@ el oa
wwie L RO
A Renoe Line
Connang. Eventc | ,‘Z—J | Comnand Evericnt |
First | Prev | [~ 52] 719 Nedt | Last || Rafresh | | I~ pubload Time: [5 3 Il TR select = T st | prew 53] (19 nea | Last |1 Retresh | Il awsioao Time: [5 2 I ThG setect =
| 30 evere anfo: Foms 0 Event eype. 1 @AOSICS EvENY) Persod 0 tebr 0BG § [0 event nfo. Funs 0 Fvenc type: 1 (SIoS EVEND) Period 0 Ombit 0 50 S
A | s o mat | s -

Figure 2: An ALICE p—p@14 TeV event showing simulated (left) and reconstructed data (right).

Figure 3: An ALICE Pb-Pb@5.4 TeV/nucleon event showing simulated (left) and reconstructed data (right).

EVE - Event Visualization Environment of the ROOT framework Matevz Tadel

3.5 Calorimeter data

Calorimeter classes in EVE can be divided into two categories: the data holding classes and
the visualization classes.

3.5.1 Data holding classes

The calorimeter visualization must support advanced operations on the calorimeter data, like
automatic rebinning and summing of calorimeter cells, in 17 and ¢, as well as along the longitudinal
segmentation. Further, it must be possible to set separate thresholds on each longitudinal segment
of the calorimeter. All these operations are available via the abstract interface TEveCaloData.
Two concrete implementations are provided in EVE.

TEveCaloDataHist represents the data in a stack of energy versus 77-¢ histograms, inter-
nally using the ROOT’s THStack class. Each histogram in the stack represents one longitudinal
segment. This is convenient for global views of the calorimeter response as well as for physics
analysis applications.

TEveCaloDataVec allows the user to specify individual calorimeter cells by their 17 and ¢
range and longitudinal segment identification. This class can be used for detailed views as there is
no assumption on the 1n-¢ segmentation of the individual cells.

3.5.2 Visualization classes

The visualization classes reference the data-holding object and present a specific representa-
tion of this data. Several visualization objects can point to the same data-object and thus provide a
coherent view, based on the thresholds and other visualization parameters specified by the user.

The abstract base-class TEveCaloViz provides the data-members and methods that are com-
mon to all visualization classes: 1 and ¢ ranges, scales (absolute or relative), a flag whether E or
Er should be displayed, and optionally a palette for mapping of signal value to color.

TEveCalo3D displays the calorimeter in 3D space, as a set of towers. An example is shown
on the left side of Fig.4.

TEveCaloLego displays the 1-¢ lego-plot, which is the preferred way to view calorimeter
data for physics analysis. The class supports two rendering modes: as a 3D histogram (right side of
Fig.4) and as a 2D plot, where sizes or colors of the cells represent the deposited energy (bottom-
left window on Fig.11).

TEveCalo2D is used to present the cells summed up in 1 or @, and is used in projected views
(right picture in Fig.9).

3.6 Miscellaneous visualization classes

TEveText allows arbitrary text to be displayed in 2D or 3D. The FTGL library is used internally
to display the text. Extruded 3D fonts are also suported.

TEveTriangleSet displays triangle meshes and each triangle can be assigned its own color. A
complex example is shown in Fig.5.

TEveArrow provides display of a 3D arrow. This can be used to represent directions in space
(like missing E7) or to point to a specific feature in 3D space.

EVE - Event Visualization Environment of the ROOT framework Matevz Tadel

Lol

aUiaver | 20 viewsr | Lego viewe|

(GLViewer | 2D Viewer Lego Viewer

(46545, 3.8936, 0.0000)

I Tuotistisse
I Lo e m
[et

[Tuotstia

|3 Tottion =

Styie Data | siyle | metin | Data |

arm— Eev——
Teveanert

Show 7 56 12 Chin
7 UseTians I Earans
TevecaiLego
Tousr20: [|- Ao color
aracoior |-

Fonicoor. I |-

planecolor, I |50 3
Zrcnans: [58]
Poject [t =]
20Mode: Ve o]

PO |
TEvecaioviz
Scasabsoue.” Maeval 100 3 @
Masowein] 193]

Pot:C EC B

e [oo
enon [0 2) .
eca [03]

wea [0 8|

v |

orsalltiy 345 TEeTiangioss

chigren I -

st
7 UseTrans [~ Edfans

< b Lo

Figure 5: TEveTriangleSet showing a 3D-studio model (3ds importer provided by B. Bellenot).

4. Raw-data visualization

Visualization of raw-data is, in comparison to hits or clusters, complicated by the implicit
digit positioning based on the module and channel number. Further, a signal value must always
be shown in some fashion, usually by color or size of the digit’s visual representation. In this

section the support classes for raw-data visualization are discussed first and then classes for raw-
data presentation are described in detail.

4.1 Support classes

The support classes encapsulate functionality that is shared among several visualization classes
and further, by several instances of a given visualization class, implying that they must be refer-

EVE - Event Visualization Environment of the ROOT framework Matevz Tadel

enced via pointers from the visualization objects. These objects are reference-counted with auto-
matic destruction, thus relieving the framework and the user of any management issues.

The TEveRGBAPalette class provides mapping of signal values to colors from a given
palette. A GUI is provided to manipulate minimum / maximum values to be displayed and dif-
ferent display options are available for display of under- and over-flow bins. The palette can be
imported from ROOT or specified manually.

The TEveFrameBox class can be used to render frames of specified dimensions and color
around a set of modules of the same type. 2D and 3D frames with wire-frame or solid rendering
are supported.

4.2 Raw-data presentation classes

All raw-data presentation classes are in fact containers for individual electronic-channel rep-
resentations and usually one object is used to represent one detector module. A transformation
matrix (class TEveTrans) can be assigned to each object allowing the position of the digit to be
given in the local coordinate system. Further, by changing the position of a set of modules, they can
be arranged in arbitrary layouts, not necessarily following their realistic placement in the detector.
All this basic functionality is provided in the base-class TEveDigitSet, including the pointers to
TEveRGBAPalette and TEveFrameBox objects. For each digit, a signal value and an external
object reference (a TRef) can be specified by the user. A histogram of registered signals can be
produced via a GUI button.

TEveQuadSet is the most widely used class for raw-data visualization. It contains a set of
rectangles, lines or hexagons (see left side of Fig.6). For memory and rendering-speed optimization
reasons, a user can specify the type of elements in a very precise way that allows almost any
parameter to be held constant for the whole collection (e.g. z-coordinate, rectangle width and
height, etc).

TEveBoxSet provides a similar service but the basic elements are 3-dimensional box-like
objects or cones so that the variation in size further supplements the signal—color information. See
the right side of Fig.6.

For more complex examples custom classes need to be designed. For example, ALICE TPC is
expected to produce 80 MBytes of raw-data per central Pb-Pb collision and optimised algorithms
are required to control visualization parameters. Screen-shots of TPC visualization are shown in
Fig.7.

5. 2D projections

2D projections and fish-eye transformations are indispensable for a detailed inspection of the
vertex region as well as for good utilization of the screen-estate as, without some artificial scaling,
outer detectors typically use up much more space than inner ones [8]. In EVE, the projections
can be performed automatically on extracted geometry, points, tracks and on calorimeter data.
Currently EVE provides r-¢ and p-z projections, but the interface is not restricted and supports
easy addition of new projection-types.

EVE - Event Visualization Environment of the ROOT framework Matevz Tadel

el

700 800~ 3003000
Single Cell Edep (ad)

Figure 6: Examples of raw-data visualization classes. Left: TEveQuadSet as used for ALICE PMD
detector. Right: TEveBoxSet filled with random data.

GLviswer

TPCSectotD
¥ snovrane
vartiac [1903

pontsize [202]

Figure 7: Visualization of ALICE TPC data for a simulated Pb—Pb event. Separate sub-classes were devel-
oped for display of the data in 2D (left and right) and 3D (right).

The central management of a given projection is done by the TEveProjectionManager
class. It connects together the actual geometric projection (abstract base-class TEveProjection)
and a list of EVE-elements that need to be projected.

EVE elements that support the projection operation must derive from the abstract interface
TEveProjectable. One of the main roles of this class is to specify the class of the projected ob-
ject (abstract method TClass* ProjectedClass ()). This is used by the manager to instantiate
a replica of proper type. Further, the projectable also holds the list of projected replicas to allow
for propagation of changes in visualization parameters.

Another abstract interface is required for the projected classes — TEveProjected. This allows
the manager to, first, inform the projected object about its original (projectable) object and, second,
to update it when the projection parameters change.

Examples of projected views are shown in figures 8 and 9.

10

EVE - Event Visualization Environment of the ROOT framework Matevz Tadel

Browser Eva |Elo Camora Scene o Browser Eva |Elo Camera Socene o
Eve | Files | Macros | GLViewer SPIGLVIew | Dataselecton | G histograms | Eve | Files | macros | GLViewer SpiGLView | Dataselection | G4 istograns |
B T = 3 T T = T T T DAL
300200 <10 200 300 500 -500 300 -200 -100 0 100 200 300 500
- 200 200 = 300 300
- = 200 200
— 100 100 -
e - 100 100
o
4 |5 o 00 =
= = = = = = i
sy | - 0 o4 sy |
Name —————— b T — C o o
RGP (5.0)-TEVeProactionhiansger RGZ (5.0)-TEVaPraoctonhianager
TeveEiement Teveienent
Show: 7 Sof 7 Chiden)
TeveProjecton - TeveProjecton -
e [FPI] Pl -100 -100 ol
F ey e a— - 100 -100
T o -
b 200 -200 -
Foasz [40008 g =200 -200
scalef [000 2 = 300 -300 3 = 300 -300 4
scalez. [000 3] = E £ 3
P | N
Trackstep] 502 300200 -100 0 100 200 300 500 100 200 300 500
S ey Y A TR RN I WY Y bl
centenx: [0002 3] — Connand Eventci | Connana Evenicy |
centery: [-0.002 2] First | Prov 53] /19 et | Last | Il [Retesh | || avtioas Tie:[5 2] Il TRa seloct = First | P 53] /19 et | Last | Il Retesh | || Autioas Tie:[5 2] Il TRa seloct =]
e | [Fal svent snfo. Fons 0 Event cype 1 (PRSI EVEND Beraod 0 Ombat. 0 B0. S [Fal svent snfo. Fons 0 Event type 1 (SIS EVEND Beraod 0 Ombat. 0 B0. S
= E : - : | o
| i cton TP Gt 1 I

Figure 8: r-¢ (left) and p-z (right) projections of a ALICE pp event. Fish-eye distortion is enabled in both
views.

Browser Eve | Elle Canera Scene. ﬁval Browser Eve | Ele Canera el
E| et Y
s

i o] ey
DVt Lo Viwer]___

200 100] 100 20 0 a0

Qp e
S Tt

Syle Data |

R ——
R £

Teveraecion
e [P0 o
ot

oo
Foacz
scaon

weaw [oo -

i | - i
| 52 r1s o | s |0 Botesn | I - uooas Tme [%3] Il T sooct[1

e 0_Eent. type 1 (PHYSIOS EVENI) Period: 0 Ochat: 0 BG: 5
I

Corterz. [035 2] —

200 100 o 100 200 0 a0
I I

| et on TP Gt BT I

Figure 9: Left: close-up on the silicon tracker of the event shown in the previous figure. Right: r-¢ view
of a CMS event using the TEveCalo2D class. Red and light-blue segments represent the EM and hadronic
calorimeters.

6. Usage of EVE

6.1 AIIEVE - ALICE Event Visualization Environment

ALEVE is the standard visualization tool of the ALICE experiment. It is used not only for
standard offline visualization tasks, but also for physics analysis, high-level trigger visualization
and for online monitoring. Its functionality can be split into three main elements.

1. Access to ALICE data and core classes. Visualization code accesses data in a random fash-
ion, based on user input and not on any predetermined pattern as is the case during simulation
or reconstruction. Thus we need to shield the AliROOT event-loading functionality from the
visualization data-consumers to prevent multiple loading of the same data and to simplify
the user interface by covering the most frequent usage patterns. Additionally, it must support
loading of detector geometry, magnetic field maps, alignment data and detector-conditions
database.

11

EVE - Event Visualization Environment of the ROOT framework Matevz Tadel

This functionality is aggregated into the EveBase module. It depends on a minimal set of
AliRoot’s components and is required for visualization of ESD and AOD data.

2. Raw-data and detector-module visualization needs to be treated with special care as it
requires direct access to raw-data reading functionality, as well as to the specifics of detector
structure and read-out electronics, such as module positioning, segmentation and channel
numbering conventions. The most advanced solution is required for the TPC, in part also
due to its large data-volume. Other complex detectors (e.g. ITS, TRD, TOF) extend EVE
base-classes for raw-data representation, mostly to provide tools for user-interaction. For
simple detectors with small data-volume and little segmentation (e.g. VZERO, TO), the
visualization is provided by scripts that use EVE classes directly.

3. Visualization scripts are CINT macros that perform the actual extraction of the data, create
and fill the visual representation objects, and register them into the application. In a sense,
they provide a bridge between the ALICE data and the visualization structures and relieve the
core application of any knowledge about AliROOT internals (other than event-data interface).
The default demonstration scripts are provided with the AIIEVE distribution and are named
by sub-detector and data-type, e.g. tpc_digits.C, trd_clusters.C, etc.

Every effort is made to keep AiEVE as small and as simple as possible. Another simplification
comes from the usage of CINT scripts for data-extraction steering. By providing a concise interface
for their invocation and exception-throwing methods for obtaining handles into the ALICE data,
their framework induced overhead is reduced to a bare minimum. Further, as standard ALICE
data-containers are returned by these functions, the macros retain the look and feel of standard
AliROQOT code. This helps users to understand the macros, and to tailor or enhance them for their
specific needs without any further complications. A screen-shot of AIIEVE in action is presented
in Fig.10. More details about AIEVE are available in [4].

6.2 cmsShow — Physics Analysis Oriented Event Display of CMS

cmsShow is based on the light version of the CMS software framework and uses EVE as a
toolkit to present and manage its visualization data. Most of the EVE GUI functionality is hid-
den from the user to prevent users from wandering too deep into the structure of EVE. All sup-
ported operations are provided via a concise and consistent user interface that makes it easier to
use for novice and non-expert users. However, EVE components are used extensively and several
high-level features of EVE were designed in collaboration with cmsShow developers. The most
prominent examples are the calorimetry visualization classes and the selection-feedback system.
An example of cmsShow is shown in Fig.11.

7. Conclusion

EVE is a complete visualization framework, satisfying a full range of requirements of a HEP
collaboration. It is distributed within ROOT, which is already used by most HEP collaborations, at
least for data-processing and data-analysis. Thus the usage of EVE becomes even more convenient

12

EVE - Event Visualization Environment of the ROOT framework

Matevz Tadel

Browser Eve | Ele Canera

Im JFies | waors |
=T

Qe
= [V Cascad vertex locations O
S350 Tk by gy

¥ 7 TEveTak idee10, signar 1000.000 8

s Jos |

70 TS reft; Signa > 5 [1839}: TEveTrackLis|
TEveElenent ———
Show. ¥ Seif ¢ Chidren

Marker ——————
Moo

N g [

P Tenioet oo o

GLviever | spicLviow| oataselcton] G isograns |

Connana Evantcn |

First | Prev | 135:‘ 7150 Newt | Last [I Refresn | Il = Autoloas Time: [~ 3] Il TG select.

R\mvt snm Evettyp 7 (PHISICS EVENT) Period: 1 Ochit: Sh62d8 BC: 23c

7.
Eveats in file: 136 Tinestamp: 2008-09-25 21:27:59, MagPield: 1.00e-13

Al

-300 -200
sl Lo

500 -300-200 -100

-100
e

100 200300 500
Ll

100 200 300 500
bl

200300 500

Figure 10: A composite screenshot of AIEVE showing a cosmic shower observed during the cosmic-ray
runs in summer 2008.

as it does not encumber the visualization environment with additional software requirements that
might hinder deployment and portability.

Wide and fast adoption of EVE in the HEP community shows that it has indeed provided a
missing piece in the landscape of HEP visualization software. Future work on EVE will mostly
focus on implementation of features and extensions required by the user community.

Acknowledgements

The author would like to thank Alja Mrak—Tadel for the dedicated work on the project as well
as for her understanding and support.

References

[1] R. Brun and F. Rademakers, Nucl. Inst. & Meth. in Phys. Res., A 389 pp 81-86.

See also http://root.cern.ch/.

[2] M. Tadel GLED — an Implementation of a Hierarchic Server—Client Model, (Advances in Computation:
Theory and Practice vol 16) ed Pan Y and Yang L (New York: Nova Science Publishers) pp 21-37.
See also http://www.gled.org/

[3] M. Tadel and A. Mrak-Tadel, XV Int. Conf. on Comp. in High Energy and Nucl. Phys. 2006, 1
(Mumbai: Macmillan) pp 398-401.

[4] M. Tadel, Raw-data display and visual reconstruction validation in ALICE,
J.Phys.Conf.Ser.119:032036,2008.

13

EVE - Event Visualization Environment of the ROOT framework

Matevz Tadel

Flle Edit View Window Help

Fien, |

©] 0l m|O] un: [T e | T Thudan 1000000 1570 GMT

views [Physicsobects | Trgers | Trackina |
“lol

Crecn
5

=]

A\

(5]

(6]

(7]

(8]

Figure 11: A screenshot of cmsShow displaying a simulated ¢7 event.

http://dx.doi.org/10.1088/1742-6596/119/3/032036

M. Tadel, 2007 The New Generation of OpenGL Support in ROOT, J.Phys.Conf.Ser.119:042028,2008.

http://dx.doi.org/10.1088/1742-6596/119/4/042028

I. Antcheva, R. Brun, C. Hof and F. Rademakers, The Graphics Editor in ROOT,

Nucl.Inst.&Meth.Phys.Res. 1 559 pp 17-21.

R. Brun, A. Gheata and M. Gheata, A geometrical modeller for HEP, XIII Int. Conf. on Comp. in High
Energy and Nucl. Phys. 2003 THMTO01 [physics/0306151]. See also Root Users Guide pp 299-350.

H. Drevermann, D. Kuhn and B. Nilsson, Event Display: Can We See What We Want to See?, Presented

at CERN School of Computing ’95, Arles, France.

http://ipt.web.cern.ch/IPT/Papers/CSC95/EDisplay/

14

