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Group structure of the IBP identities

1. Introduction

Multiloop calculations are important from both theoretical and practical points of view. There
is a number of mathematical techniques which are used for such calculations. Some techniques,
e.g., Feynman parameterization and Mellin-Barnes representation, are aimed at the direct calcula-
tion of a given diagram. However, these techniques are not always successful when applied to the
diagrams with large number of the internal and/or external lines. A more universal approach is the
reduction of a given loop integral to some number of the master integrals. The master integrals
may then be evaluated using the above techniques. Very important advantage of the reduction-
based approach is that it provides new methods of the evaluation of the master integrals. Namely,
the reduction procedure allows one to obtain the linear differential/difference equations for the
master integrals with respect to some continuous/discrete parameter (external invariant, denomina-
tor power, or space-time dimensionality). Solving these equations is often simpler than the direct
calculation of the master integrals.

The first step of the whole reduction procedure is the tensor reduction which expresses the
tensor integrals via the scalar integrals. This step is well understood and can be performed using
modern computer programs. After this, one is left with the integrals of the form

J (n) = J(n1,n2, . . . ,nN) =
∫

dD l1 . . .dD lL j(n) =
∫ dD l1 . . .dD lL

Dn1
1 Dn2

2 . . .DnN
N

, (1.1)

where the scalar functions Dα are linear polynomials with respect to si j = li · q j (li is a loop mo-
mentum, q j is either loop or external momentum). The functions Dα are assumed to be linearly
independent and to form a complete basis in the sense that any non-zero linear combination of them
depends on the loop momenta, and any si j can be expressed in terms of Dα .

Basic idea of further reduction is to use some identities between the integrals with different
multiindex n in order to express the complex integrals via the simpler ones. For the reduction
procedure to work, it is necessary to define some suitable ordering of the integrals, i.e., the ordering
in ZN . First, one introduces the notion of sectors in ZN . The θθθ = (θ1, . . . ,θN) sector, where θi =
0,1, is a set of all points (n1, . . . ,nN) in ZN whose coordinates obey the condition sign(nα −1/2) =
2θα −1. In particular, the point (θ1, . . . ,θN) belongs to the (θ1, . . . ,θN) sector, and can be referred
to as the corner point of the sector. Owing to this definition, the integrals of the same sector have
the same set of denominators. It is natural to consider the integrals with less denominators to be
simpler. When the number of denominators coincides, we will consider the integrals with smaller
total power of the numerators and denominators to be simpler. Then goes the total power of the
numerators and the last is the lexicographical ordering.

Among the identities which can be used for the reduction are the symmetry relations and
integration-by-part identities. Symmetry relations reflect the symmetries of the original diagram
and of the diagrams with some lines contracted. The IBP identities [1, 2] come from the fact that,
in dimensional regularization, the integral of the total derivative is zero.They are derived from the
identity

0 =
∫

dD l1 . . .dD lLOik j(n) , (1.2)

where Oik = ∂

∂ li
·qk. Performing the differentiation in the right-hand side and expressing the scalar

products via Dα , we obtain the recurrence relation for the function J.
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Group structure of the IBP identities

Though the derivation of the IBP identities is trivial, their application to the reduction is seri-
ously hampered by their infinite number. The problem is that it is not always clear, which identities
should be used to reduce a given integral. One standard approach, which has proved to be useful,
is considering the identities starting from the simplest ones and creating a database of the rules for
the reduction [3]. The drawbacks of this approach are obvious: as any undirected search, this pro-
cedure is both time- and memory-consuming, which, for complicated cases, means inaccessible for
computers available. The advantage of this method is its universal applicability. Another approach
to the problem is to reformulate it as a problem of "division with the remainder" with respect to
some ideal [5, 6, 4]. The main difficulty on this way is the derivation of the Gröbner basis of the
ideal, the procedure which is not always successful [7].

The consideration presented here is based on Ref. [8]. It makes use of a simple observation
that operators Oik form a closed Lie algebra which corresponds to the group of the linear change of
variables (LCV group). The closed Lie-algebraic structure of the IBP identities is reflected in the
huge redundancy of the IBP identities. This redundancy, while being harmless for not very large
systems of equations, essentially slows down the Laporta algorithm. On the other hand, the same
Lie-algebra structure makes the problem of IBP reduction very special case of the general problem
of reduction. Therefore, the construction of the Gröbner basis seems to be too general approach,
which is neither necessary nor always successful. Moreover, we demonstrate that, strictly speaking,
the problem of the IBP reduction is not reduced to that of reduction modulo some ideal.

The paper is organized as follows. In Sec. 2 we introduce the operator form of the IBP
reduction and formulate the problem of reduction as that of reduction modulo direct sum of definite
left and right ideals. In Sec. 3 we discuss the Lie-algebraic structure of the IBP operators and its
connection with the LCV group. The application of the criteria proved in [8] is also discussed in
this Section.

2. Operator representation

Let us introduce, similar to Ref. [4], the operators Aα and Bα acting on functions in ZN as
follows

(Aα f )(n1, . . . ,nN) = nα f (n1, . . . ,nα +1, . . . ,nN) ,

(Bα f )(n1, . . . ,nN) = f (n1, . . . ,nα −1, . . . ,nN) . (2.1)

Note that these operators act on function, but not on its arguments, and should not be confused with
the conventional n± index shifting operators. Owing to their definition, these operators obey the
following commutation relation

[Aα ,Bβ ] = δαβ . (2.2)

Our choice of the operators (2.1) is well adjusted with the notion of sectors. If n belongs to some
sector θθθ , and P is some polynomial operator constructed of An, Bm then (PJ)(n) contains only the
integrals of the same sector and its subsectors. While considering the IBP identities in definite
sector, it is natural to introduce the ordering of monomials, constructed of Ak, Bk, consistent with
the ordering of the integrals in this sector. E.g., as a measure of complexity of a monomial ∏i Aαi

i Bβi
i
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Group structure of the IBP identities

in sector θθθ , we can use the list

{∑
i

σiγ
−
i ,∑

i
(θi−1)γ−i ,σ1γ

−
1 , . . . ,σNγ

−
N ,∑

i
γ

+
i ,α1,β1, . . . ,αN ,βN}, (2.3)

where σi = 2θi−1, γ
±
i = αi±βi.

Using operators (2.1), we can express the IBP identities as constraints on the function J having
the form

(PikJ)(n) =−
∫

dD l1 . . .dD lLOik j (n) = 0. (2.4)

It follows from the definition of Oik that any Pik is a quadratic polynomial of the form

Pik = aαβ AαBβ +bαAα + c,

where aαβ , bα , c are some coefficients (depending on i,k).
Let L be the left ideal generated by operators Pik, i.e. a set, consisting of all operators, which

can be represented as

∑
i,k

CikPik, (2.5)

where Cik are some polynomials of A1, . . .AN ,B1, . . . ,BN . This ideal has a simple meaning: for any
L ∈L the relation

(LJ)(n1, . . . ,nN) = 0 (2.6)

is a linear combination of some IBP identities. In fact, any linear combination of the IBP identities
can be represented in a more specific form

(LJ)(1, . . . ,1) = 0, (2.7)

since shifting of the indices can be done by acting from the left with some powers of Aα or Bα .
At first glance, the problem of reduction is equivalent to that of division with the remainder by

the ideal L , which is effectively solved by the construction of the Gröbner basis. However, there
is an additional obstacle. Note that for any function f of N integer variables the following relation
holds

(BαAα f )(1, . . . ,1) = 0 . (no summation) (2.8)

Indeed,

(BαAα f )(1, . . . ,1) = (Aα f )
(

1, . . . ,
α

0, . . . ,1
)

= 0 × f
(

1, . . . ,
α

1, . . . ,1
)

= 0, (2.9)

where the overscript α denotes the position of the index. Let R be the right ideal generated by the
elements (B1A1) , . . . ,(BNAN). By definition, it consists of all operators of the form

R = ∑
α

BαAαCα , (2.10)

where Cα are some polynomials of A1, . . .AN ,B1, . . . ,BN . It follows from Eq. (2.8) that

(R f )(1, . . . ,1) = 0. (2.11)
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Thus, for the reduction procedure to work, we have to have an algorithm of division with the
remainder by the direct sum of the left ideal L and the right ideal R. That means that we have to
invent the algorithm allowing the decomposition

p = L+R+ r, (2.12)

where L ∈ L , R ∈ R, and r is the simplest possible with respect to the ordering chosen. Even
though the problem is clearly formulated, such algorithm appears to be unknown so far.

It is important to note that a naive application of consecutive reduction, first with respect to
L , next with respect to R does not give an acceptable reduction. The formulation presented above
might give a clue of why the approaches based on Gröbner basis do not give a universal solution.

3. LCV group and IBP identities

Let us show now that the IBP identities possess some special features which are not taken into
account in the conventional reduction procedure so far. First, we note that the operators Oik form a
closed algebra with the commutation relations

[
Oik,O jl

]
= δilO jk−δ jkOil. (3.1)

This algebra is nothing but the algebra of the group of linear changes of variables

li→Mikqk. (3.2)

The operator Oik = ∂

∂ li
·qk corresponds to the infinitesimal transformation li→ l′i = li + εqk in the

sense that

f (s′lm)dD l′1 . . .dD l′L =
{

f (slm)+ ε

[
∂

∂ li
·qk f (slm)

]}
dD l1 . . .dD lL +O(ε2). (3.3)

Note that the so-called symmetry relations are also the consequences of the invariance of the inte-
gral under the action of some elements of this group.

We can easily check that the operators Pik obey the same commutation relations as the opera-
tors Oik:

([P1,P2]J)(n) = (P1P2J)(n)− (P2P1J)(n) =
∫

dD l1 . . .dD lLO2O1 j (n)−
∫

dD l1 . . .dD lLO1O2 j (n)

= −
∫

dD l1 . . .dD lL[O1,O2] j (n) . (3.4)

The minus sign in the last line is the same as in Eq. (2.4).
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In Ref. [8] several consequences of this algebraic structure have
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Figure 1: 3 loop tadpole
topology.

been outlined. The first criterion concerns the automatic search of zero
sectors. According to this criterion, it is sufficient to solve the IBP iden-
tities in the corner point of the sector in order to determine whether the
sector is zero or not. If the solution results in vanishing of the simplest
integral of the sector, the whole sector is zero, otherwise, it is not.

Criteria II and III from Ref. [8] allow one to essentially reduce the
set of the operators to be considered. Let us discuss the Criterion III of
Ref. [8]. As an example, we consider the three-loop massive tadpole,
shown in Fig. 1. The reduction rules for the massive tadpoles have been
obtained in Ref. [9]. Thus, our example serves only as a demonstration of the method. The IBP
operators corresponding to this topology have the form

P11 = −D +2A3 +2A6 +A1B1−A6B2 +A1B3 +2A3B3 +A6B3−A1B4 +A6B6 ,

P12 = −B1A3 +B3A3 +B4A3 +2A3 +2A6−A1B1−A6B1−A6B2 +A1B3 +A6B3

−A1B4 +A6B5 ,

P13 = −B1A3−B2A3 +B4A3 +B6A3 +2A3 +2A6−A1B1−A6B1−A1B5 +A6B5

+A1B6 +A6B6 ,

P21 = −B1A4 +B3A4 +B4A4 +2A4−2A6−A1B1 +A2B2 +A6B2−A1B3 +A2B3

−A6B3 +A1B4−A2B6−A6B6 ,

P22 = −D +2A4−2A6 +A1B1 +A6B1 +A2B2 +A6B2−A1B3−A6B3 +A1B4

+A2B4 +2A4B4−A2B5−A6B5 ,

P23 = −B2A4 +B4A4 +B5A4 +2A4−2A6 +A1B1 +A6B1−A2B2 +A2B4 +A1B5

−A2B5−A6B5−A1B6−A6B6 ,

P31 = −B1A5−B2A5 +B4A5 +B6A5 +2A5 +2A6−A2B2−A6B2−A2B3 +A6B3

+A2B6 +A6B6 ,

P32 = −B2A5 +B4A5 +B5A5 +2A5 +2A6−A6B1−A2B2−A6B2 +A6B3−A2B4

+A2B5 +A6B5 ,

P33 = −D +2A5 +2A6−A6B1 +A2B2−A2B4 +A2B5 +2A5B5 +A6B5 +A6B6 (3.5)

Taking into account the symmetry, one can consider 7 different sectors, which we choose as

(1,1,1,1,1,1), (1,1,0,1,1,1), (0,1,1,1,1,1),

(1,1,0,1,0,1), (0,1,0,1,1,1), (0,0,1,1,1,1), (0,0,0,1,1,1). (3.6)

Let us introduce the notion of "sharpening" of the system of operators in a given sector. This
stands for the Gauss triangularization of the above system of polynomials with respect to the most
complex monomials in the system.

The sharpening of the system (3.5) in first three sectors from Eq. (3.6) immediately reveals the
operators which can alway be used for the reduction in these sectors. These are P33−P32, P11−P12,
P33−P32, respectively.
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The reduction of the topology (1,1,0,1,0,1) is not that simple. The sharpening in this sector
results in the following operators:

P1 = P11 +P22 +P33 =−2A4 + . . . , P2 = P12−P11 =−A6B5 + . . . ,

P3 =−P12 +P13−P22 +P23 =−A4B5 + . . . , P4 = P11−P12 +P33 =−A2B5 + . . . ,

P5 = P11−P12 +P13 = A1B5 + . . . , P6 = P32−P33 =−A6B3 + . . . ,

P7 = P21−P22 +P31−P32 =−A4B3 + . . . , P8 = P31−P32 +P33 = A2B3 + . . . ,

P9 = P11−P32 +P33 =−A1B3 + . . . (3.7)

Here we have shown only the leading monomials. Analyzing these monomials, we see that the
rules generated by these operators fail for the integrals of one of the following forms

J(n1,n2,0,1,0,n6) , J(1,1,n3 < 0,1,n5,1) , J(1,1,0,1,n5 < 0,1) (3.8)

Note that the maximal number of free parameters (the "dimension") of this set is only 3. If we
choose to switch to Laporta algorithm at this point, the Criterion III of Ref. [8] guarantees that we
have to run in this algorithm only over this set of points (and use the above rules for the reduction).
If we want to proceed further in symbolic form, we may try to construct the S-polynomials of
our operators and to reduce them with respect to the above system of operators. In particular,
A6P4−A2P2 = A2

6 + . . .. This gives us a reduction rule which is also subject to the Criterion III.
Taking this rule into account, we are left with the following unexpressed integrals:

J(n1,n2,0,1,0,1) , J(n1,n2,0,1,0,2) , J(1,1,n3 < 0,1,n5,1) , J(1,1,0,1,n5 < 0,1) (3.9)

This simple step reduced the dimension of our set to 2. Again, we can switch to Laporta algorithm
and to run over 2-dimensional subset. Note that if we used the Laporta algorithm from the very
beginning, we would have to run over 6-dimensional set of the points in a given sector.

The same analysis can be applied to the rest of the sectors. Typically, it reduces the dimension
of the set of unexpressed integrals by half or more in our example and a number of the topologies
considered by the author. After this analysis, one can choose between the Laporta algorithm over
the rest set and more complex analysis which will be presented elsewhere.

4. Acknowledgements

The author thanks the organizers of the conference for stimulating him to write this contribu-
tion. This work was supported by RFBR Grant No. 07-02-00953.

References

[1] F. V. Tkachov, Phys. Lett. B 100, 65 (1981).

[2] K. Chetyrkin and F. Tkachev, Nucl. Phys. B 192, 159 (1981).

[3] S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000).

[4] A. Smirnov and V. Smirnov, JHEP 0601, 001 (2006), [hep-lat/0509187].

7



P
o
S
(
A
C
A
T
0
8
)
1
0
5

Group structure of the IBP identities

[5] O. V. Tarasov, Acta Phys. Polon. B 29, 2655 (1998).

[6] O. V. Tarasov, Nucl. Instrum. Meth. A 534, 293 (2004), [hep-ph/0403253].

[7] A. Smirnov and V. Smirnov, PoS(ACAT)085 [hep-ph/0707.3993v1].

[8] R.N. Lee, JHEP 0807, 031 (2008).

[9] D.J. Broadhurst, Z. Phys. C 54, 599 (1992).

8

http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ACAT)085

