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1. Introduction

The exploration of the QCD phase diagram, both experimigraat theoretically, is one of the
main thrusts of present day research in strong interactiysips. Experimentally, hot and dense
matter is created in the laboratory via the collision of lyeauclei, and experiments have been
carried out at many facilities, starting from the BEVALACrabderate center of mass energies of
Vs~ 2.5AGeV to RHIC at,/s= 200GeV and soon at the Large Hadron Collider (LHC)/at~
5TeV. Theoretically, the properties of hot and dense styoin¢eracting matter are explored with a
variety of approaches and strategies, ranging from La®IC® to perturbative QCD and effective
models. Since interesting structures in the phase diagtentm &s co-existence regions, critical
points etc. are most likely associated with non-pertuvieatihenomena, at present Lattice QCD
(LQCD) is the only available method to explore the phasecsiine directly within QCD. However,
rigorous LQCD calculations so far only allow for the caldida of quantities at vanishing baryon
number chemical potential, where it has been shown that @B @ansition, often referred to as
the deconfinement or chiral restoration transition, is aayditc cross over [1]. On the other hand,
effective chiral models, such as the linear sigma model @Nhmbu Jona-Lasinio model, find a
first order phase transition at small temperatures and laaggon-number chemical potential (for
a review see e.g. [2]). Together with the cross over at zergobadensity, this suggests that there
should be a critical endpoint, where the first order coertestops. While this is seen in the
effective models, so far the existence of a critical end flo@s not been rigorously established in
Lattice QCD. Several methods to explore the region of finiteybn density have been developed
[3, 4, 5] but they are restricted to either the region of siatlyon-number chemical potential or to
systems with small volume. In addition new ideas about aiplestjuarkyonic” phase [6] based
on largeN; arguments have emerged. As a result, the schematic phagardiaepicted in Fig.1
may indeed be much richer than shown.

While the existence and the location of a QCD critical poptiase co-existence region or
other phases is not yet rigorously established theorbtidhls should not prevent an experimental
exploration of a possible structures in the QCD phase diagiadeed, this has been one of the
main driving forces of relativistic heavy ion research. Bgihg the beam energy one can influence
the temperature and density region of the system undertigaéien. This is evidenced by the
systematics of hadronic abundances, see e.g. [7], wherenigerature and chemical potential
needed to describe the observed hadron abundances chahgeari energy. In addition to tuning
the beam energy one of course needs robust observables wtlicate that the system has indeed
undergone a phase change. This is a rather non-trivial teckva will try to review the status of
some of these observables in this contribution.

This contribution is organized as follows: In the next sattive briefly remind the reader about
the nuclear liquid gas transition. Then we turn to the QCDspldiagram and try to summarize the
various techniques that have been developed to exploreigterce of a critical point by means of
Lattice QCD. After a more general discussion of observaiesvill then review the present status
of some of the observables which already have been measueed wide range of beam energies.
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Figure 1: Schematic QCD phasediagram

2. The (Nuclear)Liquid-Gas Phase Transition

Conventional nuclear matter has a first order phase tranditbom a dense (liquid) to a dilute
(gas) phase which ends at a critical point at temperafurel6 MeV. The fact that nuclear matter
has such a phase transition is not at all surprising. Theeauébrce, with its short range repulsion
and intermediate range attraction, is very similar to a van\Waals force which is used as a
textbook example to introduce real gases with phasetiansibetween a gaseous a liquid phase
(see e.g.[8]). Therefore, conceptually the phase tramsitf nuclear matter, often referred to as the
“nuclear liquid-gas phasetransition”, is rather straigiward and its existence has been predicted
already in the seventies, e.g. [9].

In addition, the phases are easily identified even for a ssyatem such as it is produced in a
collision of nuclei: the low density (gas) phase is nothing & gas of nucleons whereas the high
density (liquid) phase is made out of droplets or rathertehssof nucleons, often referred to as
intermediate mass fragments. This is quite different irradghe QCD transition. There, the low
density phase is a hadron gas, which is easily identifiedHauhigh density phase is most likely
some kind of deconfined matter, which is not so easily dedeiatan actual experiment.

Experiments searching for the nuclear liquid-gas phassitian in intermediate energy nu-
clear collisions have been carried out for more than 20 yaadsthe existence of a liquid-gas
co-existence has been established by several differentoaet(for a recent compilation of the
state of the art see [10]). Most relevant for the task of idfgng a possible phase co-existence
region in the QCD diagram is likely the identification of ploemena related to a spinodal insta-
bility [11, 12, 13]. If a system moves sufficiently fast inteetco-existence region it can enter the
mechanically unstable regime, the spinodal region, whictuin results in dynamical (spinodal)
instabilities. These instabilities lead to the formatidiblmbs of typical size, which is determined
by the length scales of the underlying interaction. In cdsine® nuclear liquid-gas phasetransi-
tion, spinodal instabilities were predicted to lead to éveasses which are characterized by a
very narrow distribution in the size of the final fragmentisThas been convincingly observed in
experiment by the INDRA collaboration [14].
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3. The QCD Phase Diagram

As already mentioned in the introduction, the QCD phaserdiags reasonable well under-
stood for vanishing baryon number. Here, Lattice QCD wittygered fermions finds an analytic
crossover [1] at a temperature ©f = 170— 190 MeV. While the actual value of the crossover
transition temperature is still being disputed [15, 16§ fact that the transition is a crossover is
agreed upon by all Lattice groups. At finite baryon densitygaquivalently baryon number chem-
ical potential,ug, the situation is less clear. Lattice simulations are védificdlt if not impossible
to carry out due to the complex phase in the fermion detenmyjnvehich arises at finitgis. There
are, however, several methods to circumvent this problemth® one hand there are the so-called
reweighting methods. The pioneering work [17] in this apgitohas indeed located a critical point.
With realistic quark masses, this method predicts its lopaat T ~ 160MeV and ug ~ 360 MeV
[3]. However, the method employed can not easily be extetoléarger volumes and, therefore,
one does not know if the signal survives in the infinite voluimét. Other approaches calculate
the free energy at finite chemical potential as a Taylor esjoarnn terms of the chemical potential
(see e.g [5, 18]). The expansion coefficients are given bjpaingon number cumulants or suscep-
tibilities. While this method does not allow to extract atical point directly it can provide limits
for its location. At present a conservative limit for its ahieal potential isug = T¢ ([5, 19]), where
T, ~ 180MeV is the transition temperature at vanishing baryamimer density.

Another way to analyze models and also Lattice QCD resultkd@nregion of small chemical
potentials is to find the critical quark mass for which oneagist a second order transition [20].
This is depicted in Fig.2. Most chiral models predict that ¢hitical quark mass increases with the
chemical potential (right panel of Fig.2). In this case, erpects a critical point at finite chemical
potential once the critical quark mass coincides with thespal quark mass, as can be seen in
the figure. Lattice QCD, on the other hand, seems to favor pipesite trend, namely a decreasing
critical quark mass (left panel of Fig.2). This is the resilf20, 21] obtained in an expansion up to
fourth order in the chemical potentigk on a rather small lattice. If these lattice results hold up fo
larger lattices it seems that the chiral dynamics does matiprthe smalLig behavior of the critical
guark mass correctly and other effects are more dominané gossibility would be a repulsive
vector coupling, which is neither constrained nor ruled lmusymmetry arguments. As shown in
[22] a suitable choice of a repulsive vector coupling careetireproduce the trend seen on the
lattice. However, at this conference O. Phillipsen repbfiest results with larger lattices where he
sees a somewhat reduced curvature, consistent with zeeoefbhe, at present, the situation is still
open. Also, calculations in a linear sigma model includingrinal fluctuations finds two critical
points [23] for a pion mass ah; = 35 MeV, indicating that the critical surface depicted in.Rig
may bend back at higher temperatures. For a physical pios,nidis model exhibits only one
critical point at largeug consistent with all other mean field treatments of the signdhMambu
Jona-Lasinio model (for a compilation see [2]).

Obviously there is only limited theoretical guidance forexperimental search for the critical
point as the model predictions for its location vary quitétaferom hadronic freeze out systematics
[7], on the other hand, one knows that the chemical poteaotitiie system created depends on the
center-of-mass energy of the collision. Unless the tenmperaf the critical point is unexpectedly
low, one can explore regions up to abqut < 500MeV in the chemical potential by lowering the
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Figure 2: Behavior of the critical line as a function of chemical pdtahug. Left panel: Scenario favored
by Lattice QCD [20, 21] where critical line moves towards #eraquark masses. Right panel: Standard
scenario predicted by most chiral models, where critiaz Imoves towards higher quark masses. The
figure is adapted from [20].

beam energy to aboyts~ 5GeV. Hence, the strategy for a search is to study excitétioctions
of various observables and see if they show non-monotortievier at the same beam energy,
indicating the location of the critical point or of the firgder phase co-existence region

4. Fluctuation and Correlations: From theory to observables

Fluctuations and correlations are unique signatures fas@ltransitions. Therefore, an exper-
imental search for a possible critical point and a first oeexistence region in the QCD phase
diagram is intimately connected with the study and measememf fluctuations and correlations.
Before we will discuss presently available data let us lyiediview the underlying concepts of
fluctuations and correlation in the context of the systenma@rmhodynamic equilibrium.

A system in thermal equilibrium (for a grand-canonical enkk) is characterized by its par-

tition function
Z=Tr [exp(—%)} (4.1)

whereH is the Hamiltonian of the system, af@gl and y; denote the conserved charges and the
corresponding chemical potentials, respectively. In cdiskeree flavor QCD these are strangeness,
baryon-number, and electric charge, or, equivalentlythihee quark flavors up, down, and strange.
The mean and the (co)-variances are then expressed in tedeswvatives of the partition function
with respect to the appropriate chemical potentials,

Q) = T4 109 (4.2
2
(8Q8Qy) = T 5,5, 109@) =VTXij (4.3)

with 8Q; = Q; — (Q;). Here we have introduced the susceptibilities
2

Rz log(Z) (4.4)

Xi,j
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which are generally quoted as a measure of the (co)-vassanidee diagonal susceptibilitieg; ;,
are a measure for the fluctuations of the system, whereadfitiagonal susceptibilitiesy; j; i # j,
characterize the correlations between the conserveded@@ndQ;. We note that the suscepti-
bilities are directly related to the well known cumulantsstatistics [24].

One can define and study higher order susceptibilities outamts, by differentiating multiple
times with respect to the appropriate chemical potentials

X(ni7nj7nk) _ i oni o o
VT o(pi/T)™ 0(pj/T)™ (/T )™

Higher order cumulants up to the sixth [18, 25, 26, 27] andhesighth [5] order have been
calculated in Lattice QCD.

Susceptibilities are related to integrals of equal timeeaation functions of the appropriate
charge-densities. Here we will restrict ourselves to theoisd order susceptibilities keeping in
mind that the higher order susceptibilities can also beesgwed in terms of appropriate (higher
order) correlation functions.

Consider a density fluctuatiadp; (x) = pi(x) — p; at locationx, wherep; denotes the spatially
averaged density of the char@g Then the susceptibilities are given by the following imtdgver
the density-density correlation functions:

1 1_ 1
Xij = ﬁ/d3xd3y<5pi(x) opji(y)) = ?pid,j +?/d3rCi$j(r). (4.6)
The correlation functions
Ci,j(r) = (0pi(F) 0pj(0)) — 0i3,jO(F) ~

are characterized by typical correlation lengéhg The correlation length provides a measure for
the strength and type of the correlation. For example, ie cda second order phase transition the
correlation length diverges with a characteristic critexgoonent, usually denoted as

To illustrate this point let us first consider the case of asilzal ideal gas. This will also
serve as useful reference for comparison with LQCD resi8isice a classical ideal gas has no
correlations, by construction its correlation functiorigh,Cigeaigas= 0, and the susceptibilities
are given by the first, local term in Eq. 4.6,0;4 j, implying that all co-variances vanish. As a
conseqguence, the fluctuations are proportional to the nuofhgarticles in the system, and thus
grow linearly with the system siz¥,.

logZ. (4.5)

exp[—r/& ]
f’ (4.7)

((6Q)?) ~V (4.8)

The more relevant case concerning the QCD critical poinesponds to a second order phase
transition. In this case, the correlation length divergabe critical temperature

E~ T T (4.9)

wherev > 0 is relevant critical exponents characterizing a secoddrgshase transition in a given
universality class [28]. In this case, the volume dependaridhe susceptibilities is governed by
the integral of the correlation function

Xij~ E2~ V23 (4.10)
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so that the fluctuations grow like
{(6Qi)?) ~ V3, secondorder (4.11)

In case of a first order transition we have co-existence o$ehavith different densities, and
the correlation function is a consta@r) = const# 0. Consequently, the fluctuations scale like

((6Q)?) ~V?, firstorder (4.12)

Most other systems, including systems with a cross oveh aa&QCD at vanishing chemical
potential [1], will exhibit a finite correlation length. Ceaquently, the susceptibility is independent
of the volume, and the fluctuations scale linearly with thieinee, just as in the case of an ideal gas

{(6Q)?) ~V, nophase-transition (4.13)

In principle, one could utilize the above volume scaling g fluctuations in heavy-ion ex-
periments by studying the system size dependence of, argoinumber fluctuations. However,
in case of the second order phase-transition, the phenomaeritical slowing down limits the
actual size of correlation length due to the finite life-tiofehe system created in these collisions.
A maximum correlation length &f ~ 2.5fm has been estimated in ref. [29] which is much smaller
than the typical size of a system created in these reactiGoesisequently, such a system would
just behave like any other with a constant correlationdlerand, therefore, would not exhibit the
system size dependence discussed above.

After these more formal consideration let us next turn to@obbservables. Since the baryon
density is an order parameter for the phase transition & fil@nsity, baryon number fluctuations
are the natural observable to consider. However, as disdussdetail in [30] baryon number
conservation imposes serious limitations on this obséeyaspecially for low center-of-mass en-
ergies. In addition, the measurement of the baryon numhgrires the detection of neutrons,
which is difficult. As argued in [31], it may be sufficient taudlly proton number fluctuations, as
the iso-vector channel does not show critical behavior. él@# if the baryon-number fluctuations
are suppressed due to global baryon-number conservatienhas to be careful that the remain-
ing fluctuations, which one observes in an actual experifragstnot simply isospin fluctuations.
Those will not be indicative of the QCD phase structure atdidensity.

In addition, even if the system reaches the critical pol,dorrelation length, which diverges
in a thermal system, would be finite due to critical slowingvddogether with the finite time the
system has to develop the correlations. In [29] a corraldgagth ofé ~ 2.5fm has been estimated
based on these considerations. Therefore, it may be adyesmis to study higher order cumulants
which depend on higher powers of the correlations length [BRleed the fourth order cumulant
X scales like the seventh power of the correlation length/ [32]. Thus if the correlation length
increases only by 10% in the vicinity of the critical poinheoshould see an enhancement by a
factor of two in the fourth order cumulant, whereas the sdaoder cumulant, i.e. the fluctuations,
would only increase by 20%. A first measurement of these higtteer cumulants has been carried

1The correct scaling of the susceptibility with the voluméeuatly involves the critical exponentg,~ VY/(V). Our
example here is correct for so called mean field exponentsddiails see [28].
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out by the STAR collaboration at full RHIC energies [33], wd@o significant signal is found,
consistent with expectations based on the absence of asg piaasition at smallg.

Initially transverse momentum fluctuations have been pegas a signature for the critical
point [34, 35], since close to the critical point the systdmwdd develop large, and mostly long
range, i.e low momentum, fluctuations. Therefore, it wagyested that an excitation function of
the transverse momentum fluctuations should show non-rapitobehavior, especially for small
transverse momenta. In the meantime, such an excitaticstidbtnhas been measured and it is
shown in Fig.3 for different charge combinations and défdrcuts on the transverse momentum.
Critical fluctuations, corrected for critical slowing dovand expansion of the system [29] would
lead to a bump which should be at least a factor of two largen time statistical background.
Obviously, the data shown in Fig.3 do not show such a behasten for small transverse momenta.
The results at RHIC [36] are consistent with the data from.$R8ce, so far there is no indication
of a critical point in the transverse momentum fluctuatiorasugements. Of course it could be that
the signal is too weak to be seen and it may also be washed subisgquent hadronic interactions.
To address this issue, higher cumulants, as discussed,ater@ to be measured as they should
show a stronger enhancement close to the critical pointhBtmore, on the theoretical side, one
needs to get a better understanding of the degradation pfdpesed signals in the hadronic phase.

< 10 < 10 < 10
i p, <750 MeV/c %) p, <500 MeV/c % p, <250 MeV/c
2 sf 2 5 2 g
o ! ) o [] o
& T = su! ] = yys ! ]
oF= 28 OF&----mmm e OF---=--mmmmmm e
@ all charged @ all charged @ all charged
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Figure 3: Preliminary data on the energy dependencgidfuctuations from the NA49 collaboration [37]
for all charged particles and for positively and negativdigrged particles. The panels show the fluctuations
for different cuts in the transverse momentum. The figurelépged from [37].

The only observable which shows a strong beam energy depemdege the fluctuations of
the kaon-to-pion ratio, shown in Fig.4, and neither a trartsgpproach nor the statistical hadron
gas model can reproduce these data [38, 39]. Howev@%amic scales with the inversaccepted
multiplicity (see e.g. [30]), and the observed rise may weell be partially due to the changing
acceptance of the fixed target NA49 experiment. That this awyally be the case, has been
investigated in [40], where several scaling prescriptibage been used to predict the excitation
function of the kaon to pion ratio fluctuations. The resudtsown in Fig.4, indicate that a large
part of this enhancement may actually be due to the depead#@iynamicai ON the multiplicity
of accepted particles. While an additional enhancemenatare ruled out at this time, it is still
not clear if it would be related to the critical point. Closgethe critical point one would expect the
fluctuations of the pion number to be enhanced. But this wounfay also enhanced fluctuations
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Figure 4: Fluctuations of the kaon to pion ratio as a function of beaergyn The data are from the NA49
[38] and the STAR collaboration [41]. The lines represenesa ways to scale the/s = 200 GeV data
taking into account the actual accepted multiplicities: details see [40].

of the proton-to-pion ratio, which is not observed in expemt [38], where the data are well
reproduced by the URQMD calculations. In addition, in thise the effects due to multiplicity
scaling are small [40].

While most of the attention is presently on the QCD criticainp and its detection, let us
emphasize that it might be more beneficial to look for and tifiethe first order co-existence
region. Finding one implies finding the other as they areriately related. Contrary to the critical
point, the first order transition corresponds to an eréggonin the T — p phase diagram. Thus it
is more likely for the system to cross this region rather tthencritical point. It is also more likely
for the system to spend sufficient time in this region in ondetevelop measurable effects. One
example is the development of spinodal instabilities, Whie a generic phenomenon of dynamical
first order transitions [11]. Spinodal instabilities haweeh studied and successfully identified in
the context of the nuclear liquid gas phase transition [14i].the case of the QCD first order
transition, spinodal instabilities could lead to kinematorrelations among particles [13] and to
enhanced fluctuations of strangeness [42]. And indeed theredd enhancement of the kaon-to-
pion fluctuations, if real, may be due to these enhanced fitions in the strangeness sector [42].
However, just as for the critical point, there has been natjaive calculation of the effect due
to hadronic re-scattering on the observables. In addipoesently there is no dynamical model
which carries the system through the spinodal region. Ircttse of the nuclear liquid gas phase-
transition such models proved to be extremely useful iniggithe experimental searches. These
models have also helped to develop unigue observables,asutife variance of the cluster size
which subsequently could be identified in experiment[14iisTanalysis lead to a rather convicing
case for the existence of a first order phase co-existendenrégy nuclear matter. In order to
build a similar dynamical model for the QCD case, additidnfdrmation is needed. While fluid-
dynamics appears to be a reasonable framework, it needsdgtéeded to include finite range
effects. Itis these finite range effects which determinetypécal size of the blobs created by the
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dynamical instability characteristic of the spinodal megiA first step towards such a development
has been carried out in [43] and has been reported at thisremde. But the development of [43]
requires the knowledge of a length scale characterizinditite range effects. At present this is
not known for the QCD phasetransition whereas in case of tlotear liquid gas transition it is
directly associated with the range of the nuclear intesactDne way to extract this information is
to study the interface energy and thickness in lattice QCD.

Although this contribution is about fluctuations, in clagilet us briefly mention other observ-
ables which are discussed in the context of the criticaltpditost prominently is the idea to look
for soft modes in the low-mass dilepton invariant mass spettHowever, itis not clear if the soft
modes, responsible for the large density fluctuations diogke critical point, are visible in the
dilepton channel, since they are of space-like origin. éujen analysis of the fluctuations close
to the critical point carried out in the Nambu model with #ngquark masses [44, 45] shows that
the sigma-meson remains gaped at the critical point, agntoathe chiral transition in the limit
of vanishing quark masses. Thus, in this model no significaahge due to the critical point has
been seen in the time-like spectrum, which is accessibldeptdn spectroscopy.

There are a number of other possibilities which have not gehkexplored theoretically. For
example, it maybe interesting to further explore the coavenres between the baryon density fluc-
tuations and other guantities which couple to the baryorsitiersuch as e.g. dileptons. These
co-variances are expected to become large and could pobsilileveloped into practical observ-
ables, which will not be affected by baryon number consamat

5. Conclusions

To conclude, let us remind ourselves that the field of rakttavheavy ion collisions started out
with the quest to find and identify the QCD phase transitiorhilé/many interesting phenomena
have been discovered on the way, such as the surprisinglg #liptic flow, the quest is still on.
In view of the fact that Lattice QCD predicts the transitidnvanishing baryon density to be a
crossover, going to even higher energies is not the rigbttdon to explore structures in the QCD
phasediagram. Instead, a beam energy scan towards loweiesnes planned for RHIC, is the
right way to explore the phasediagram in the high densitjoregvhere true phase transition are
expected. For such a program to be successful one needsIpajuidance from theory for the
location of a possible phase transition but also for obddegathat are most sensitive and robust for
an actual measurement. This aspect is not yet very well degd| and it may be useful to adapt
some of the strategies developed for the identification @fitinclear liquid gas phase transition.
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