PROCEEDINGS

OF SCIENCE

Inhomogeneous phases near the chiral critical point
in NJL-type models

Dominik Nickel*
Massachusetts Institute of Technology
E-mail: dni ckel @ni t . edu

The role of inhomogeneous phases in the phase diagram ofaimdid-Jona-Lasinio (NJL) and
the quark meson (QM) model is examined. By means of a gemedatsinzburg-Landau (GL)
expansion itis concluded that the critical pointin the méall phase diagram of the NJL model
is in fact a Lifshitz point where homogeneous spontanedursiigen, inhomogeneous and restored
phases meet. This picture is confirmed by a mean-field caicnléor inhomogeneous phases
with a one-dimensional modulation. For the latter it is shawat recent results within lower
dimensional models can be extended to 3+1 dimensions. A&soespective phase diagram for
the QM model is presented.

5th International Workshop on Critical Point and Onset ofddafinement
June 8-12, 2009
Brookhaven National Laboratory, Long Island, New York, USA

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Inhomogeneous phases near the chiral critical point in Xyjhe models Dominik Nickel

1. Introduction and summary

Until today the phase diagram of quantum chromodynamicsJ3€subject to intense theoretical
and experimental investigations (for dedicated revievesRef. [1]). Since ab initio calculations
are limited to small net-baryon densities, possible séesat moderate temperatures and densities
are often discussed within NJL-type modelspically within mean-field approximation.

Here we limit ourself to results for inhomogeneous grouradest in the NJL model [2] and QM
model [3]. These are characterized by a spatially varyinigioparameter and have been discussed
for QCD at least in the larg8l limit, where they are expected to form the ground state at suf
ficiently high densities [4, 5, 6]. Related to this they shagwin holographic models [7] and in
the quarkyonic matter picture [8] that suggests a similarcstire for QCD. The investigations of
these phases is however limited, mainly because they drnitatly much more involved. Within
the NJL model such phases have been analyzed at vanishipgtaines applying further trun-
cations [9] as well as for the so-called chiral density wal@, [11]. In the latter case the order
parameter is assumed to be a plane wave and it can be solvegamfrald level for vanishing
current quark masses. Recently, also the effect of smakktuiguark masses has been discussed
for this ansatz [12].

Following Ref. [13] we first address inhomogeneous phasesi&gns of a generalized GL ex-
pansion, i.e. by an expansion of the thermodynamic polesiaan effective action in the order
parameters as well as in gradients acting on the order péearidis is a systematic expansion on
top of a mean-field approximation in the vicinity of a secomdes phase transition and therefore
especially suited to explore the region around the crifaht (CP). For the NJL model it then
turns out that the CP is in fact a Lifshitz point, where thet fingler phase transition in the phase
diagram of the NJL model is replaced by two second order ptrassition lines that border an
inhomogeneous phase and these two transition lines mdat &R

In order to give a better picture of this finding and in pafticuo estimate the importance of
inhomogeneous phases in the phase diagram also away fra@Ptivee then focus on a complete
mean-field calculation, following Ref. [14], and consideh@mogeneous ground states that form
lattices of domain-wall solitons. The key observation herehat for the case of one-dimensional
modulations in the order parameter, the problem can be eeldiocan analogues problem in the 1+1
dimensional (chiral) Gross-Neveu (GN) model. For this mdaaleomogeneous phases have been
investigated for the largd limit [15, 16, 17, 18, 19], which technically correspondsitmean-field
approximation, and basically all ground-states have bkessified at least for the chiral limit [20].
For the case of the GN model it is furthermore possible tathice finite quark masses and to
study their effect on the structure of the phase diagram [IB§ possibility to use solutions from
lower dimensional models is mainly due to the structure ef mirean-field Hamiltonian, which
is of Dirac-type, and a similar procedure is e.g. not possibl(color-)superconductors. As a
consequence the investigation of the latter is much moieusd21].

Being able to investigate the role of inhomogeneous phastheiphase diagram of the NJL model
at least for one-dimensional modulations, we can confirnpitteire obtained by the GL expansion

1\We refer to NJL-type models as models that at least in théexpppproximation reduce to the NJL model, possibly
extended by additional point-like interactions, on a técainevel. This includes e.g. simplified ansétze for theoglu
interaction, the use of different regularizations, thednson liquid model and the quark-meson model.
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for the vicinity of the CP and the absence of a first order phasesition line in the phase diagrdm
Furthermore we analyze the relation between inhomogengloases and e.g. the strength of the
first order phase transition (present in the case of homagsnghases), explore the role of finite
current quark masses and discuss results in the QM modelpUtpese for the latter is twofold:
On the one hand we would like to extend the analysis to a larigels of models in general, on
the other hand the regularization of the NJL model for inhgem®ous phases is non-trivial with
regard to a combined vacuum and QCD phase diagram phencoggnol

2. Generalized Ginzburg-Landau expansion

Following Ref. [13], we first concentrate on the two-flavoi.Ndodel given by the Lagrangian
L = G iy 0y — ) w+ Gs (@) + (Fivry)°) | (2.1)

where ¢ is the N¢N.-dimensional quark spinor fals = 2 flavors andN. = 3 colors, y# are
Dirac matricesGg is the scalar coupling and the mass matrix for degenerate quarks with current
guark massn. For Ny = 2 the matricesx? are the conventional Pauli matrices. In mean-field
approximation with(gy) = —%M(x) and (iy°t3yY) = 0, the Lagrangian gets replaced by the
bilinear functional
_. M(x) —m)?

IF = W('V“du—M(X))W—%- (2.2)
In the case of a periodic condensate with Wigner-SeitAtalhd using the imaginary-time formal-
ism, we therefore obtain for the mean-field thermodynamiemital as an effective action in the
order parameter

: _ T = =
QT M) = -5 In/-@w@wexp@do’%]xv(fw +uw¢’w>>
T 1 1 (M(x)—m)?
= —y ety Log(S™) +\7/V ((iT)Jrconst, (2.3)
with inverse propagator
SHxY) = (iY"du —M(x))8@W (x~y). (2.4)

Since the evaluation of the thermodynamic potential for fuitrary function is non-trivial due to
the functional logarithm, we first aim at an expansion in thgeo parametel (x). Settingm= 0
for simplicity and substracting the leading order corresjiog to the thermodynamic potential of
the unbroken phase, we formally arrive at

AQ(T, u;M(x)) = ——Z) Trocfv (SM)" v 4G (2.5)
Here we have introduced the bare propag&o# S x)—o and a short hand notation for
Trocryv (SM)" // / Trocf (M(X)S(X,%X2)M(X2) ... M(Xn)So(Xn, X)) -
(2.6)

2This picture could of course be modified by the inclusion dbcsuperconducting phases.
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The domain of integration fax is [0, 4] x V and[0, 2] x R3 for x;,...,%,. In the chiral limit the
expressions for odd values ofanish. Furthermore, in order to arrive at a local functipne can
expand the condensate arounds

1
M(xp) = ¥ D M(X)(xn—X) (2.7)

|a|>0 a:
and can extract the GL functional to any desired order inigrad and order parameter. Neglect-
ing possible issues with the regularization for the momemtcan go to momentum space using

3

S(Xxy) =T3n ((;T)ps(pu y)~texp(ip(x—y)), wherepy = (2n+ 1)niT. Treating the magnitude of
the order parameter and the gradients to be of the same ividéinen a tedious but straightforward
exercise to work out

Qo (T, M(X) = ZM()?+ 5 (M(x)* + (M ())?)
+% (M(x)6+ 5(0M (x))2M (x)2 + %(AM (x))2> ,
2.8)
where
n d3p 1 Oon
an = (—1)24NchTZ/reg.(2n)3 A 2.9)

This expression has to be taken with some caution as the nsogeh-renormalizable. As a result
usually a regularization, as part of the phenomenologicadet is introduced. Due to this ad hoc
procedure a generalization of the regularization to inhgemeous phases is often not unique. We
could therefore take the pragmatic viewpoint that a geizatabn of any such ad hoc regularization
procedure to inhomogeneous phases is assumed to be suttahderivative terms (which arise in
the calculation of the GL functional) vanish. An alternatapproach is a regularization scheme that
does not rely on an homogeneous ground state, e.g. a propaggularization for the functional
logarithm in Eqg.(2.3). In this case it is possible to showt tha additional complication due to
ultraviolet divergencies arise.

The most interesting feature of the GL functional is thatdbefficient of theM (x)4-term is equal

to the (OM(x))?-term. As discussed below this will allow for inhomogenepbases in the regime
whereay < 0. It is also worth noting that the GL functional takes a sanilorm as in the one-
dimensional GN model [15, 17]. This is not the case in supetaotors [22] where the underlying
dynamics is different, namely coming from particle-pdetiand hole-hole scattering near the Fermi
surface instead of particle-hole scattering in presengse.c

With the generalized GL functional at hand we can exploreuicaity near the CP, which is
defined bya, = a4 = 0 andag > 0. Without giving a specific choice of model parameters, we
assume that such a point in the phase diagram exists anddodhe effect of the gradient terms.
Specific examples will be subject of the following sectioror &4 > 0 we have a conventional
second order phase transition@t = 0 between a dynamically brokem{ < 0) and a restored
phase ¢, > 0). Limiting to homogeneous phases this phase transiticendered first order when
going through the CP into the regime wherg < 0. The transition line for this case is given by
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a4 = —+/160206/3. In this case, however, also inhomogeneous phases campéeted since the
(OM(x))2-term is negative and a curvature in the order parametertzarfore lead to a gain in
free-energy.
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Figure 1: Pictorial presentation of the phase diagram in terms of the@#fficients: The gray domain cor-
responds to the homogeneous dynamically broken groure] st@tshaded gray to the solitonic ground state
(at least when restricting to one-dimensional modulationise order parameter), whereas in the transparent
domain the unbroken phase is preferrédis an arbitrary scale. Also stated are various lines digzligs

the text.

To explore this possibility further we limit ourself to a ecdenensional modulation, i.eM(x) =
M(z). The solutions to(%AQ = 0 are actually known from the investigation of one-dimenalo
models [18, 22]. They are expressed (up to an arbitrary)shifterms of the elliptic Jacobi sn-
function as

Mip(2) = Vvasn(gz v), (2.10)

wherev € [0,1] and g being a scale related to the maximumMip(z) and the extension of a
soliton in the chosemdirection (both scales are related in our case).werl we haveMip(z) =
gtanh(gx), i.e. a single soliton and far — 0 the shape becomes more and more sinusoidal albeit
the amplitude also goes to zero. From previous investigatibis known that when increasirmg

from zero we reach a second order phase transition into amiafeneous phase with= Mg and

v = 1. At this point the free-energy of a single soliton becomegative leading to its formation.

By using Mg known from the homogeneous case and checking w@g&@w(x):,\ﬂm(z) changes

sign atv = 0, we obtainas = —/ %602016 for this point. We arrive at the onset of infinitely far
separated solitons. Further increasmgdecrease® until it reaches zero. Sincg stays finite

the overall magnitude df1;5(z) given by+/vq then vanishes and we find a second order phase
transition to the unbroken phase.

In case of a second order phase transition from the inhonemgenphase to the unbroken phase,
the value ofay in terms ofasag is actually universal also for higher dimensional modolagi of

the order parameter. Since in this cddx) is parametrically small, we can neglect non-quadratic
terms in the GL functional. Consequently the variat@ﬂAQ leads to a linear partial differen-
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tial equation. We can then optimize the valueoafby varying the momenturg of the Fourier

components oM (x) and findas = —4 /%az% for the transition line whergg| = ggg
The modification of the phase diagram in the vicinity of the i€RIso illustrated in Fig. 1. Ne-
glecting the possibility of inhomogeneous phases, thekldatted line shows the first order phase
transition when limiting to homogeneous phases. The shddethin then depicts where inho-
mogeneous phases are energetically preferred. It is eclmstwo second-order phase transition
lines that meet at the CP, and it covers the first order phaasition line.

We do not want to address the general question whether amwodeneous phase with a higher
dimensional modulation could become favored in the vigioitthe CP, but it may very well be that
the one-dimensional modulations are generally prefen@skdo the CP as numerically confirmed

in Ref. [23] for the analogous case of inhomogeneous phagesramagnetic superconductors.

3. Phase diagrams allowing for inhomogeneous ground stateswith a
one-dimensional modulation

In order to determine the mean-field thermodynamic potewithout further approximations, we
evaluate Eq.(2.3) to

g —m)2
Q(T, u;M(x)) = 2TN°ZTrDvLog<%(iah+ﬁMF—u)>+\%/\/7(M()2Gsm) :

_ 2T >> V/ +const, (3.1)

= Z In <2 cosh(

where we introduced the energy-spectr{if} of the Dirac-type Hamiltonian

Hur = —iy’yYd +y'M(x). (3.2)

Limiting to order parameters with a one-dimensional motioifeM (x) = M(z), we can make use
of two connected properties. First, we use the conservedentump, in the perpendicular x-
and y-direction combined with Lorentz symmetry and expedssigenvalues through the sgt }
atp, = 0 (see Ref. [14] for details), giving

AJ14p2 /22— Cm?
QT, M) = —21,:\'02/(;%2 In (Zcosh( = )) +\%/\/w

2T
—+const. (3.3)

Second, we observe that the Hamiltonkge for the casep; = 0 can be cast into the form

H
Hurp = ( 1 Hm) , (3.4)

where Hue:1p is the Hamiltonian of the GN model for the same order paramdte). Since
the spectral densities for the considered inhomogeneoaseghare analytically known, we can
evaluate the thermodynamic potential and in particularstey , over the eigenvalue spectrum.
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Figure 2: Left: Structure of the NJL phase diagram in the chiral lingtaafunction of temperaturé and
quark chemical potentiglg for Mg = 300MeV. The black (short-dashed) line indicates the secoddr
phase transition from chirally broken to restored phase réfu (solid) line the first order phase transition
and the bullet the critical point. The spinodal region islesed by the blue (long-dashed) lines. Right:
Same plot as on the left including the orange (shaded) dowtaéne the energetically preferred ground state
is inhomogeneous.
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Figure 3: Left: Same plot as on the right of Fig. 2, now including resfitr My = 350MeV (upper branch)
andMq = 250MeV (lower branch). Right: Same plot as on the right of Rignow including the domain of
inhomogeneous phases for= 5MeV andm= 10MeV. Branches with critical points at smaller temperatur
T and larger quark chemical potentjaj correspond to larger current quark masses

Using the gap-equation it can furthermore be shown thatcegiistent solutions, i.e. local minima
of the thermodynamic potential, in the GN model can genbyide used to find self-consistent
solutions in the NJL model [14].

Consequently, it is possible to use the analytically knowiuteons in the 1+1 dimensional GN
model for exploring the NJL phase diagram including inhoerapus phases with a one-dimensional
modulation. The form of the order parameter of interest haethe specific form [16]

cn(b|v)dn(b|v)
i) &9

whereA is a scale parameter and sn, cn, dn are elliptic Jacobi hmgtvith elliptic modulus,/v.
Physically, it describes lattices of equidistant domaadhsolitons and it is worth noting that it also
parametrizes self-consistent solutions at finite currearkjmasses.

As already noted in the context of the GL expansion, we havwgtoduce a regularization scheme
in order to make a specific calculation of a phase diagranceStme usually employed regulariza-

M(z) = A (vsn(b]v)sn(Az\v)sr(Aer bjv) +
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tion schemes in momentum space rely on a conserved threeentom for the quasi-particles and
therefore on homogeneous phases, we apply a proper-tirakaregtion and refer to Ref. [14] for
details. We fix the coupling consta@; and cutoff scale\ by choosing the pion-decay constant
fr = 88MeV for m = 0 and the constituent quark mass in the vacim= 250, 300,350MeV.
Minimizing the thermodynamic potential in the paramet&rg andb for eachu andT, we obtain
the phase diagrams shown in Fig. 2 and 3.

As suggested by the generalized GL expansion we find thatrsteofder phase transition is re-
placed by two second order phase transitions enclosing aidoohinhomogeneous phases. The
location of the CP depends on the model parameters and tloa ignhomogeneous phases seems
strongly correlated with the strength of the first order ghtmansition when limiting to homoge-
neous phases. To illustrate the latter we also show the éxikthe spinodal region, where the
thermodynamic potential possesses more than one locainmini The picture stays qualitatively
the same when including finite current quark masses, onlge¢hend order phase transition in the
case of homogeneous phase transition is rendered a cresbere.

4. Inhomogeneous phasesin the QM model

The NJL model regularized by a proper-time regularizatind adjusted to chiral condensate and
pion decay constant is known to give constituent quark nsagéerder 200MeV in the vacuum.
Hence it gives an undesired phenomenology with regard t@Q@P phase diagram, mainly be-
cause guasi-particles will start forming a Fermi surfacet at My. This is phenomenologically
unacceptable fop < (My — B)/3 ~ 308MeV, whereMy is the nucleon mass arilthe binding
energy of nucleons in nuclear matter. In the study of the @ldgsgram we have therefore chosen
to fix f; to its phenomenological value and varying the valudvigf Since we haven't found a
regularization that avoids these problems, we also disgusedel that is very similar to the NJL
model and where the issue of the regularization scheme camrpassed: The linear sigma model,
which in this context is usually named QM model [24, 25].

The Lagrangian of the QM model withk; = 2 andN. = 3 is given by

Zom = Y (iy'ou—g(o+iwr*n®)) Yy —-U(o,m),

U(o,m) = —% (0y00H 0+ onPoH i) + )\Z (0®+ nana—vz)z—ca, (4.1)
Y is again the Hl¢N.-dimensional quark spinowy the scalar field of ther-meson and® the
pseudo-scalar fields of the pion triplet. In mean-field apjpnation we treat the fields andi® as
classical and replace them by there expectation value 824Furthermore we can use low-energy
relations to connect the parameteyg, A andv? with hadronic observables. We will express those
by the pion-decay constarf;, the constituent quark mass in the vaculty, the pion massn,
ando-meson mase, via (g) = fr, (1) =0,c=m2fy, g= Mg/ fr, A = (Mg —m2)?/(22) and
V= f2_m2/A.
For the thermodynamic potential in mean-field approximmati@ only include the contributions of
the fermionic fluctuations and approximate

Qu(T.11;0(0) =~ 5 o ey Loa (T 16w+ Fusqu — k) ) + 7 [ U(060.7),
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Figure4: Left: Phase diagram for the QM model in the chiral limit wittetred (dashed) line indicating the
first order phase transition when limiting to homogeneouwssphk only. Inhomogeneous phases are preferred
in the orange (shaded) domain enclosed by black (solid} lifRight: Same plot as on the left, now for
m; = 138MeV and with the bullet showing the critical point.

(4.2)

where o(x) is taken to be the only non-vanishing expectation value aedHamiltonian reads
Hwir.om = —iyPy'd +yPgo (x). With the identificatiorM (x) = go(x) we can therefore evaluate the
functional trace-logarithm for the same inhomogeneousghas in the case of the NJL model. In
general those phases need not to be self-consistent salutfdhe QM model, but for the purpose
of checking whether an inhomogeneous phase is preferreparaoh to any homogeneous phase,
this approach is sufficient.

The QM model is renormalizable which means that the divazgem the functional trace-logarithm
can in principle be absorbed by the model parameters. khstea proper renormalization we will
however follow Refs. [24, 25], where it has been assumedtltigazero temperature contribution
can well be approximated b& JU(a(x), (x)) with the parameters directly adopted to pheno-
menology. Choosing the model parameters throfijgh 93MeV, My = 300MeV, m; = 600MeV
and considering the chiral limih,; = 0 as well as the physical point with pion masg= 138MeV,

we obtain the phase diagrams shown in Fig. 4. The model inghbea approximation does not
have a critical point in the chiral limit and, as maybe expddtom the results obtained in the NJL
model, the first order phase transition from the chirallykieroto the restored phase is replaced
by two second order phase transitions enclosing a domainewhbomogeneous phases are pre-
ferred. For the physical value of the pion mass, we find a CPtlamdjualitative structure of the
phase diagram is the same as in the NJL model.
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