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1. Introduction

The QCD phase diagram is a matter of intense investigation from both, theory and experiment.
Some of the pressing open questions discussed at this conference are the presence or absence of
a critical point [1], the possibility of a confined chirally symmetric (’quarkyonic’) phase [2] and
the (non-)coincidence of the chiral and the deconfinement transition at zero chemical potential
[3, 4]. Answers to these questions certainly require nonperturbative approaches to QCD. On the
other hand, the considerable complexity of these questionssuggests that one approach alone is
hardly capable to provide all answers. Instead it seems promising to combine the various available
methods in order to balance their respective strengths and weaknesses.

Lattice Monte-Carlo simulations are well behaved at zero orimaginary chemical potential,
but encounter the notorious sign problem when it comes to real chemical potential. One approach
to overcome this problem, extrapolation from zero chemicalpotential by Taylor-expansion meth-
ods (see e.g. [5]), has been questioned recently on the basisof the failure of corresponding ex-
trapolations in model calculations [6]. These models, notably the Polyakov-NJL model and the
Polyakov-quark-meson model (see e.g. [7, 8, 9] and refs. therein) have been employed frequently
to explore the details of the QCD phase diagram at zero and finite chemical potential. Their success
is demonstrated e.g. by the quantitative reproduction of the lattice equation of state at zero chem-
ical potential. Furthermore they serve as a formidable qualitative playground to explore scenarios
for the details of the interplay between the chiral and the deconfinement transition. Nevertheless, it
is hard to see how the various model parameters can be constrained enough to arrive at quantitative
predictions as e.g. the location of a possible critical point [10].

A third class of approaches are functional methods involving the renormalization group equa-
tions [11] and/or Dyson-Schwinger equations [12, 13] of QCD. In the past years much progress
has been made in extending these methods to finite temperature and/or chemical potential, see e.g.
[14, 12, 15, 16, 17, 18, 19, 20]. Most of the earlier works involving functional methods concen-
trated on the chiral aspects of the QCD transition. Recently, methods became available that also
take into account the deconfining aspect [14, 16, 18, 19, 20].In this talk we report on results from
one particular method that extracts the deconfinement transition temperature from the properties of
the quark propagator at generalized boundary conditions. This method has been introduced origi-
nally within the lattice framework [21, 22] and adapted to functional methods in [18, 19, 20]. The
quantity signaling the deconfinement transition is the dualquark condensate (or ’dressed Polyakov
loop’). It transforms under center transformations exactly like the ordinary Polyakov loop and is
therefore an order parameter in the limit of infinitely heavyquarks. This quantity is furthermore in-
teresting from a formal perspective since it relates both the chiral and the deconfinement transition
to the spectral properties of the Dirac operator [21, 23].

In the following we first recall the defining equations for theordinary and the dual quark
condensate, then summarize the truncation scheme used in our DSE calculations before we discuss
our results for the chiral and deconfinement phase transition.
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2. The dual quark condensate

Consider the quark propagatorS(~p,ωp) at finite temperature given by the tensor decomposition

S(~p,ωp) = [iγ4 ωpC(~p,ωp)+ iγi piA(~p,ωp)+B(~p,ωp)]
−1 , (2.1)

with vector and scalar quark dressing functionsC,A,B. At physical, antiperiodic boundary con-
ditions the corresponding Matsubara frequencies are givenby ωp(nt) = (2πT)(nt + 1/2). The
ordinary quark condensate can be extracted from the trace ofthe quark propagator by

〈ψ̄ψ〉ϕ = ZmZ2NcT ∑
nt

∫
d3p

(2π)3 trD S(~p,ωp) . (2.2)

For vanishing bare quark masses this integral is well-behaved and delivers the chiral condensate,
whereas at finite bare quark masses it is quadratically divergent and needs to be properly regular-
ized.

Consider now non-standard,U(1)-valued boundary conditions in the temporal direction es-
tablished by the equationψ(~x,1/T) = eiϕ ψ(~x,0) for the quark fieldψ with the boundary angle
ϕ ∈ [0,2π[. For the physical antiperiodic fermion boundary conditions we haveϕ = π, whereas
ϕ = 0 corresponds to periodic boundary conditions. The corresponding Matsubara frequencies are
given byωp(nt ,ϕ) = (2πT)(nt +ϕ/2π). In this non-standard framework one can evaluate a quark
condensate by

〈ψ̄ψ〉ϕ = Z2NcT ∑
nt

∫
d3p

(2π)3 trD S(~p,ωp(ϕ)) (2.3)

with the conventional quark condensate obtained forϕ = π and multiplication withZm. It has been
shown in [22] that the Fourier-transform

Σ1 =

∫ 2π

0

dϕ
2π

e−iϕ 〈ψψ〉ϕ (2.4)

of this ϕ-dependent condensate delivers a quantity that transformsunder center transformations
exactly like the Polyakov-loop and is therefore an order parameter for the deconfinement transition.
This quantityΣ1 is called the dual condensate or dressed Polyakov loop.

The relation ofΣ1 to the ordinary Polyakov-loop becomes transparent in the following loop
expansion of theϕ-dependent condensate:

〈ψψ〉ϕ = ∑
l∈L

eiϕn(l)

(am)|l |
U(l) . (2.5)

HereL denotes the set of all closed loopsl with length|l | on a lattice with lattice spacinga. Fur-
thermorem is the quark mass.U(l) stands for the chain of link variables in a loopl multiplied with
appropriate sign and normalization factors, see Ref. [22] for details. Each loop that closes around
the temporal boundary picks up factors ofe±iϕ according to its winding numbern(l). Correspond-
ingly, the Fourier-transform in Eq. (2.4) projects out exactly those loops which wind once around
the temporal direction of the lattice (therefore the notation Σ1). In the limit of heavy quark masses
long loops are suppressed by 1/m|l | and therefore only the straight line along the temporal direction
of the lattice survives; the dual condensate is then equal tothe ordinary Polyakov-loop.

An interesting property of the dual condensateΣ1 is the fact that it can be evaluated with
functional methods [18], as we will see in the following.
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Figure 1: The Dyson-Schwinger equation for the quark propagator. Filled circles denote dressed propaga-
tors whereas the empty circle stands for the dressed quark-gluon vertex.

3. The Dyson-Schwinger equation for the quark propagator atfinite temperature

The Dyson-Schwinger equation for the quark propagator Eq. (2.1) is displayed diagrammati-
cally in Fig. 1. At finite temperatureT it is given by

S−1(p) = Z2S−1
0 (p)−CF Z1 f g2T ∑

nk

∫
d3k

(2π)3 γµ S(k)Γν(k, p)Dµν(p−k) , (3.1)

with p = (~p,ωp) andk = (~k,ωk) and renormalization factorsZ2 andZ1 f . HereDµν denotes the
(transverse) gluon propagator in Landau gauge andΓν the quark-gluon vertex. The bare quark
propagator is given byS−1

0 (p) = iγ · p+ m. The Casimir factorCF = (N2
c −1)/Nc stems from the

color trace; here we only consider the gauge groupSU(2). The quark dressing functionsA,B,C
can be extracted from Eq. (3.1) by suitable projections in Dirac-space.

In order to solve this equation we have to specify explicit expressions for the gluon propagator
and the quark-gluon vertex. At finite temperatures the tensor structure of the gluon propagator
contains two parts, one transversal and one longitudinal tothe heat bath. The propagator is then
given by (q = (~q,ωq))

Dµν(q) =
ZT(q)

q2 PT
µν(q)+

ZL(q)

q2 PL
µν(q) (3.2)

with transverse and longitudinal projectors

PT
µν(q) =

(
δi j −

qiq j

~q2

)
δiµδ jν , PL

µν(q) = Pµν(q)−PT
µν(q) , (3.3)

with (i, j = 1. . .3). The transverse dressingZT(~q,ωq) is also known as magnetic dressing function
of the gluon, whereas the longitudinal componentZL(q) is called electric dressing function of the
gluon propagator. At zero temperatures EuclideanO(4)-invariance requires both dressing functions
to agree, i.e.ZT(q) = ZL(q) = Z(q).

The temperature dependence of the gluon propagator can be inferred from recent lattice calcu-
lations. The results of Ref. [24] are shown in Fig. 2. The temperature effects on both the magnetic
and electric dressing functions are such that there are almost no effects when comparing theT = 0
result withT = 119 MeV. Further increasing the temperature toT = 298 MeV andT = 597 MeV
significantly decreases the bump in the magnetic dressing function aroundp2 = 1 GeV2. There is
no indication that this decrease takes special notice of thecritical temperatureTc ≈ 300 MeV for
quenched QCD with gauge groupSU(2). The opposite seems to be true for the electric part of the
propagator. Here fromT = 119 MeV toT = 300 MeV one observes a clear increase of the bump
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Figure 2: QuenchedSU(2) lattice results [24] for the transverse dressing functionZT(q) and the longitudinal
dressing functionZL(q) of the gluon propagator together with the fit functions [18].

in the dressing functionZL(q) and a subsequent decrease when the temperature is further raised to
T = 597 MeV. Pending further investigation it seems reasonableto assume that the maximum of
the bump is reached at or around the critical temperatureTc ≈ 300 MeV.

Although the lattice data still have considerable systematic errors [24] they may very well cor-
rectly represent the qualitative temperature dependence of the gluon propagator. We therefore use
a temperature dependent (qualitative) fit to the data as input into the DSE; this fit is also displayed
in Fig. 2 (straight lines). The fit functions are described indetail in Refs. [18, 19] and shall not be
repeated here for brevity. Note, however, that we also inherit the scale determined on the lattice
using the string tension

√
σ = 0.44 GeV [24].

For the quark-gluon vertex with gluon momentumq = (~q,ωq) and the quark momentap =

(~p,ωp),k = (~k,ωk) we employ the following temperature dependent model

Γν(q,k, p) = Z̃3

(
δ4ν γ4

C(k)+C(p)

2
+ δ jνγ j

A(k)+A(p)

2

)
×

(
d1

d2 +q2 +
q2

Λ2 +q2

(
β0α(µ) ln[q2/Λ2 +1]

4π

)2δ)
, (3.4)

whereδ = −9/44 is the anomalous dimension of the vertex. The dependence of the vertex on
the quark dressing functionsA andC is motivated by the Slavnov-Taylor identity for the vertex.
The remaining fit function is purely phenomenological, see e.g. [25] where an elaborate version
of such an ansatz has been used to describe meson observables. The parameters are given by
d1 = 7.6GeV2 and d2 = 0.5GeV2. A moderate variation of these parameters shifts the critical
temperatures of both, the chiral and the deconfinement transition but leaves all qualitative aspects
of the results presented below unchanged.

The truncation scheme described above has the merit to explicitly implement a realistic tem-
perature dependence of the gluon propagator and the quark-gluon vertex beyond simple ansaetze,
see e.g. [14, 12, 26, 27] for previous approaches. The explicit expressions of the resulting DSEs
for the quark dressing functions together with the details of our numerical method are given in
Ref. [19].
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Figure 3: Left diagram: Temperature dependence of the dressed Polyakov-loopΣ1 and the conventional
quark condensate∆π ≡ 〈ψψ〉ϕ=π together with their derivatives form= 10MeV. Right diagram: The same
quantities in the chiral limit.

4. Numerical results

In Fig. 3 we display our numerical results for the ordinary and the dual quark condensate
together with their (normalized) temperature derivativesonce evaluated for a quark mass ofm=

10MeV and once evaluated in the chiral limit. One clearly sees the difference in the chiral tran-
sition: whereas at finite bare quark mass we encounter a crossover the transition changes into a
second order phase transition in the chiral limit. In the first case the corresponding temperature
derivative shows a peak atTc = 301(2) MeV, whereas it diverges atTc = 298(1) MeV in the second
case. We also extracted the corresponding transition temperatures from the chiral susceptibility

χR = m2 ∂
∂m

(
〈ψ̄ψ〉T −〈ψ̄ψ〉T=0

)
. (4.1)

The results for quark massm= 10MeV are given in table 1.

The corresponding transition temperature for the deconfinement transition can be read off the
dual quark condensate (or dressed Polyakov loop). At finite quark mass and in the chiral limit we
observe a distinct rise in the dual condensate aroundT ≈ 300 MeV. The corresponding (normalized)
temperature derivative shows peaks atTdec= 308(2) MeV for quark massm= 10MeV. In the chiral
limit this peak moves toTdec= 299(3) MeV.

In general we note that the chiral and deconfinement transition are close together. There are a
few MeV difference between the different transition temperatures for the crossover at finite quark
masses, whereas both transitions occur at the same temperature (within errors) in the chiral limit.
These findings agree with early expectations from lattice simulations [28].

Tc TχR/T4 TχR Tdec

301(2) 304(1) 305(1) 308(2)

Table 1: Transition temperatures for the chiral and deconfinement transition for quark massm= 10MeV.
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Figure 4: Angular dependence of the quark condensate evaluated at twodifferent quark masses and in the
chiral limit at T = 400 MeV.

Furthermore we wish to emphasize that the present calculation, although carried out with
quenched lattice results for the gluon propagator, is in itself not strictly quenched: our ansatz
for the quark-gluon vertex is too simple to strictly represent the quenched theory. This can be seen
from the fact that the dressed Polyakov-loop is not strictlyzero below the deconfinement transition.
Consequently we do not observe the second order deconfinement phase transition expected from
quenchedSU(2) Yang-Mills theory. Note, however, that even if our vertex were strictly quenched
it is not clear whether the lattice input for the gluon propagator is precise enough to allow for an
observation of the second order phase transition.

The details of the mass dependence of theϕ-dependent condensate are studied in Fig. 4. We
compare the angular dependence of the condensate atT = 400 MeV for two different quark masses
and in the chiral limit. We clearly see a broadening in the central dip of the graphs with decreasing
quark mass. This can be readily understood from the loop expansion of the quark condensate,
Eq.(2.5). At sufficiently large quark masses large loops aresuppressed by powers of 1/m. As a
result only loops winding once around the torus should contribute in Eq. (2.5) and the resulting
angular behavior of the condensate should be proportional to cos(ϕ). Indeed, this is what we see:
the result for our largest quark mass can be well fitted by onlyfew terms in an expansion∆(ϕ) =

∑N
n=0 ancos(nϕ) and the first term is by far the largest contribution. For smaller quark masses we

observe also sizeable contributions from terms cos(nϕ) with n > 1. In the plot, these contributions
are responsible for the flat area around the antiperiodic boundary angleϕ = π. Approaching the
chiral limit this area becomes flatter and finally develops a derivative discontinuity at two finite
values ofϕ = π ± L. These indicate the breakdown of the loop expansion Eq. (2.5) in the chiral
limit.

Finally we show the angular and temperature dependence of the ϕ-dependent condensate
∆ϕ(T) in Fig. 5. The 3d-plot clearly shows the different evolutionof the condensate at varying
boundary conditions. Whereas at physical antiperiodic boundary angleϕ = π we observe the sec-
ond order chiral phase transition also shown in Fig. 3, we finda monotonically rising condensate
at the periodic boundary conditionsϕ = 0. For larger temperatures (not shown in the plot) we can

7
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Figure 5: A 3d-plot of the angular and temperature dependence of the chiral quark condensate.

extract a quadratic rise of theϕ-dependent condensate∆ϕ=0(T),

∆ϕ=0(T) ∼ T2 for T ≫ Tc . (4.2)

This behavior can also be extracted analytically from Eqs. (3.1) and (2.2) for the quark propagator
and the quark condensate as shown in the appendix of Ref. [19]. Around the physical value of
ϕ = π we see a plateau with∆ϕ(T) = 0 that gets broader with increasing temperature. The width
of this plateau seems to settle at a finite value smaller than 2π for T > 2Tc; however from the
available results we can neither show nor exclude that it approaches 2π very slowly forT → ∞.

5. Summary

In this talk we addressed the chiral and the deconfinement transition of quenched QCD. We
showed results for the order parameter for the chiral transition, the quark condensate, and an order
parameter for the deconfinement transition, the dressed Polyakov loop extracted from the Landau
gauge quark propagator evaluated at a continuous range of boundary conditions for the quark fields.
We found almost coinciding transition temperatures for thechiral and the deconfinement transition
at a moderate quark mass of the order of an up-quark. In the chiral limit the two transitions co-
incide within error. We find a second order chiral phase transition at TχR/T4 = 298(1) MeV and a
similar temperature for the deconfinement transition,Tdec= 299(3) MeV. It is worth to emphasize
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again that both transition temperatures are extracted fromthe properties of the quark propagator,
respectively the underlying properties of the Dirac operator.

The framework used in this work is quenchedSU(2) Yang-Mills theory. Our transition tem-
perature may be translated into the corresponding ones of quenchedSU(3) QCD using the relations
Tc/

√
σ = 0.709 (SU(2)) andTc/

√
σ = 0.646 (SU(3)) between the respective critical temperatures

and the string tension [30]. The resulting transition temperature is thenTχR/T4 ≈ Tdec≈ 272 MeV
in the chiral limit. In order to work in the full, unquenched theory we would have to take into ac-
count quark-loop effects in the gluon propagator and meson effects in the quark-gluon vertex [25].
These effects will shift the transition temperatures belowT = 200 MeV, see [3, 4] for latest results
for Nf = 2+ 1 quark flavors. As concerns the dual condensate and scalar dressing function in the
unquenched formulation one needs to carefully take into account effects due to the Roberge-Weiss
symmetry [29]. This is because of the formal similarity of the continuous boundary conditions for
the quark field to an imaginary chemical potential, see [20] for details.
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