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1. Introduction

The phase structure of strongly interacting matter pressifdcal point for research in heavy-
ion physics. Currently, RHIC at BNL is preparing for a beanergy scan that aims to identify
signals of the expected critical point, while the CBM expeit at the future FAIR at GSI will
explore the properties of compressed baryonic matter aardtséor the expected first-order phase
transition, and JINR in Dubna is planning NICA for studyifg tmixed phase.

However, it will be no easy task to extract the thermodynapfiase structure from nuclear
collision experiments. In addition to the inherent probdeanising from the smallness of the col-
lision system (which renders its spatial configuration fanf uniform) and its rapid evolution
(which prevents global equilibrium from being establishdte experimentalist is faced with the
problem that there exists yet no suitable dynamical modgl which to simulate the collisions for
the purpose of anticipating the observable effects of tlaselstructure.

A particularly urgent task is the identification of suitaloleservables that can signal the ex
istence of a phase transition. The present work is motivayegossibility that the spinodal insta-
bilities that invariably accompany a first-order phasecitme may cause the bulk of the collision
system to clump and thereby generate extractable comesatvith sufficient specificity, in analogy
to spinodal nuclear multifragmentation [1, 2]. While sonxplerations of possible experimental
signals have already been made [3, 4, 5, 6], their practidlélyus hampered by the lack of dy-
namical transport models that encompass the essentia-ptzensition physics. It is therefore not
possible to assess the degree to which those various effegtsactually develop in a collision
setting. Nor has it been determined whether they would ih $acvive the post-hadronization
expansion stage in an observable form.

An ideal transport model would explicitly evolve the mictopic degrees of freedom in the
system, which change from being partonic in the deconfinetbséo being hadronic in the con-
fined sector. Such a description has not yet been developed f@r static scenarios, and one must
rely on less fundamental descriptions. While a variety ahsport models have achieved con-
siderable success in reproducing observables for higrggrmllisions over a range of energies,
they need further development before they can be applietideeptransition dynamics. Roughly
speaking, the current microscopic transport models do eiotgntain a phase transition, while the
fluid-dynamical models are spatially local and thereforahle to capture the key feature of the
spinodal phenomenon, namely the spontaneous emergenahafacteristic length scale [7]. We
illustrate here the particular importance of incorpormgtinfinite range into the treament.

The presentation is organized as follows. First we cons&rgchematic two-phase equation of
state to serve as a concrete framework for our discussioagh&v introduce a gradient term in the
compressional energy and derive the corresponding gé&restdhermodynamics. On this basis, we
consider the equilibium interface between the two coaxisgihases and derive both the associated
interface tension and the density profile. Subsequentthinvihe framework of fluid dynamics, we
consider harmonic distortions in uniform matter and dethw corresponding dispersion relation
for both ideal and viscous scenarios; we discuss espedialgpinodal phase regiuon where such
modes are amplified exponentially. Finally, we discuss irualitative manner the strategy for
achieving spinodal phase separation in actual nucledsicols. A more detailed discussion can be
found in Ref. [8].
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2. Equation of state

For the purpose of making numerical illustrations, we agopthematic model that is a gen-
eralization of a classical gas in a density-dependent melth fihe resulting equation of state has
certain generic deficiencies and the results should therefot be taken at face value. The model
assumes that the energy dengitis the sum of a compressional temg(p), wherep is the (net)
baryon density, and a thermal term= %pT, whered is an adjustable parameter. Denoting the
entropy density of the corresponding generalized ideaisatal gas byr(k,p), we may write the
entropy density as a function efandp asa(e,p) =& (€ —wp(p),p). The associated Lagrange co-
efficients are the(¢,p) = d:0(g,p) =1/T(¢,p) anda(&,p) = 0p0(€,p) = — (&, p)/T (€, P).

1 SN o 2RVl Figure 1: The equation of statgr(p): The

pressurep, as obtained with the schematic
model, shown for a number of temperatures,
T/Te=0,%.3,2,1,2,3, as a function of the
density p. The phase coexistence (solid)
and the spinodal (dashed) boundaries are in-
1 5 ] dicated; they coincide at the critical point
(dot). The pressure has extrema at the spin-
. Equation of state ] odal boundaries and so decreases in between,
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By interpolating between a hadron gas and a quark-gluomalasis possible to adjusty(p)
so that those two phases coexisTat 0. The resulting equation of stape (p) is shown in Fig. 1,
with the critical point as well as the regions of phase cderise and spinodal instability indicated.
Figure 2 shows the corresponding phase diagram using gtbeiu, together with a number of
isentropic phase trajectories. The density is more coeweim the presence of a phase transition.
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Figure 2: The phase diagram implied by the equation of state showngnIin thep-T (left) and the
u-T (right) plane, together with several isentropic trajectorieskea curves). Changing from to u
causes the two coexisting phase points (red curve) to aeneaihile the phase trajectories exhibit significant
contortions that extend between the two spinodal bounsiégireen curve) below the critical temperature.
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3. Gradient corrections

As a simple way to take approximate account of finite rangecesf we employ a gradient
correction in the compressional energy and write the lodakaction-energy density on the form

~ 2
W(r) = wo(B(r) + AC(OB(N)? = wo(p(r)) + aPe, (D’;i”) NCED

The strength of the gradient term has the f@ms azsg / pg, wherepy is a (baryon) charge density
andgg is an energy density. We choose the phase p@igtsy) to be in the middle of the phase
coexistence regiorpg = pc = 4.70pp and g5 = &r_t./2(pc) = 3(Wo(pc) + &) = 561 MeV/fm3.
The gradient term is then governed by the lergtihich we consider to be somewhat adjustable.
(A gradient term was also used in recent fluid dynamic studli¢se hadron-quark transition [9].)
In order to derive the corresponding thermodynamic refgtiove assume that the entropy
density still has the forng(r) = &(k(r),p(r)) = &(£(r) —wW(r),p(r)), wherek (r) = &(r) —wW(r)
is the local thermal density. The local Lagrange coeffidamin then be obtained from a variation
of the total entropy§(r), 5(r)] = [dr &(r) with respect t&(r) andp(r), B(r) = 5S/8&(r) and
a(r)=0S/3p(r), yielding an explicit gradient term in the chemical potehfi(r). The resulting
expression for the local pressure is then

B(r) = &(r)T(r) —&(r)+A(r)A(r) +C(OA(r))? (3.2)

It follows that O(p(r)/T(r)) = —&(r)0OB(r) — p(r)0a(r), which can be regarded as a general-
ization of the familiar bulk relatio®(p/T) = —€d — pda; it ensures thap(T) will be constant
wheneverT (r) andfi(r) are. We also note that the gradient correction (3.1) to tiepcessional
energy density migrates directly into the local free enalgysity,

fr(r) = kr(P(r) +W(r) = To(k7(A(r),A(r)) = Fr(B(r))+3C(OB(r))*. (3.3)

4. Interface equilibrium

Once the finite-range effects have been included, we mayttreanterface between the two
coexisting phases. We denote the coexistence values oétaimpe, chemical potential, and pres-
sure byTp, Ug, andpg. and assume that the two systems have a planar interfacenggcplar to the
x direction. Global equilibrium requires that the total epy Sbe constant under variatiold€ (x)
anddp(x) that conserve the total ener§y= [ dx&(x) and the total (net) charg@= [ dxp(x),

0 = 55— fodE -~ aodB — [dx{[B(x) -~ BOE(N +[E() ~ c0lop(} . (4D)
thus implying spatial constancy of temperature and chdrp'rmential,ﬁ(x) = Bo anda(x) = do.

Because the temperature is constant we may work in the caaldramework and proceed as
Ravenhallet al.[10]. Sinced, fr(p) = pr(p), the condition for equilibrium is then expressed as

0= 5/dx[fTo — LoP(x /dx pr, (B(X)) — COZB(X) — o] SP(X) - (4.2)

4
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Figure 3: Left: The surface profilg(x) for T = 0 (solid) andT = 1T, (dashed), using as a reference for
X the positionxg where the chemical potential equals the coexistence vdltreedoulk chemical potential,
ut(P(x =x0)) = tp(T). The limiting (coexistence) densities are shown by thezumthal lines, while
the bottom curve is the interface location functigix) = 6«0 (X)/p21 [11] for T = 0. Right: The specific
interface tensior;u%o2 [12] as a function of the coexistence temperaflgréor various values of the range

Thus the equilibrium profil®(x) is determined by the following differential equation,

CoZB(x) = Hr,(P(X¥) — Ho = GpAFr,(B(X)) . (4.3)

whereAfr,(p) is the difference between the free energy density of a umifeystem of densitp,
fr,(p), and the “Maxwell” free energy density associated with tbeesponding phase mixture,
fT'\g (p) = fr,(pi) + to(p — i) < fr,(p) wherep; is either one of the two coexistence densities. The
density profile is then given by

Nl

X

dx

50 = B0+ ||| 2atup00)] 5, (4.4

Xo

wherexg is some location where the density is known, for exampledbation where\ f1,((x))
has its maximum and henga, (p(xo)) = Ho. The resulting density profile is illustrated in Fig. 3.
The local excess in the free energy density due to the imiitagiven by

2 = () — L (B(X) =BfL(B(X) +3C(P(X)* = 2Af(B(X) . (4.5)
so the total deficit in free energy per unit interface areajnkerface tension [12], is given by

~+oo

B2 = dxf

0

P2 d 1
B(x) = a/pl p_g (2640 1, (0)] 2 - (4.6)

This quantity can be obtained without explicit knowledgetaf profilep(x) and it scales directly
with the length parametex; it is shown in Fig. 3 as a function of temperature. It decesageadily
from its maximum value at = 0 until it vanishes al.. With the (somewhat arbitrary) parameter
values adopted, the zero-temperature interface tensipﬂﬂ? is 16 MeV/fm®, about 16 times the
familiar nuclear surface tension. This value lies near tveel end of the rather wide range of
expected values for the tension between quark and nuclesiemgtypical low values are 10
20 MeV/fmZ, while typical high values are 59100 MeV/fmz, see for example Refs. [13, 14]).
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5. Collective modes

The gradient correction affects the dynamical responsentdl glensity undulations imposed
on static and uniform mattege(r) = €(r) —€ anddp(r) = p(r) —p. (The local change in the
pressure is then of a similar fordp(r) = p(r) — pwith p= p(¢,p).) Assuming (at first) that the
time evolution is described by ideal fluid dynamics, the ¢igua of motion then arise from energy-
momentum conservatiod, TH" = 0, together with conservation of (baryon) charggj* = 0.

Assuming that the local flow velocitiegr) are non-relativistic, we may ignon& and thus
put y to unity. This yields the following five equations of motion,

0=, TH(r,t) ~ &de+hav , (5.1)
0=0,TH(r,t) ~ havi+4d'3p, (5.2)
0= dyjH(r,t) ~ &dp+pav, (5.3)

whereh = £+ pis the enthalpy density of the uniform system. As usual, theagons forT#V can
be combined to a sound-wave equation, while a comparisonhedfitst and last equations yields
the evolution of the density disturbance in terms of thahefénergy disturbance, so

925¢e(r) = O28p(r) , hadp(r) = pade(r) . (5.4)

It is straightforward to see that, to leading order in théuttsancede(r) anddp(r), the local
pressure ip(t) ~ p(£(r),p(r)) — CpO?p(r). The first term is the usual local-density approxi-
mation, i.e. the pressure is calculated as in uniform matter that has pespared with the local
density values, while the second term arises from the gnadmrection to the chemical potential.
Therefore, to the same order, we have

028p(r) ~ p:0%(r) + ppo0%p(r) —CPO*p(r) (5.5)

wherep, = d:p(€,p) andp, = dpp(€, p) evaluated at the local phase pofatp) = (£(r),p(r)).
For harmonic undulation}e(r) = & exp(ik -r —iwt) and6p(r) = pcexp(ik -r —iwt), the
continuity equation requirdsox = pex. The dispersion relation is then readily obtained from)5.4

P &P’
W = V§k2+CFk4 = V§k2+azﬁg—zk4' (5.6)
Py
with vg being the isentropic speed of sound,
p[dp p T h5 5
Vi = h (%)S - ps+ﬁpp :_ﬁ[ ? O + 2N0Tgp + D7 Opp | (5.7)

where g;p = 0:0,0(¢,p) evaluated ate,p) = (§,0), etc. The first term is what emerges in
ordinary ideal fluid dynamics and it is perfectly lineas, = vsk. That pathological behavior is
modified by the gradient term which generally increasgs In the spinodal region, when is
negative, the collective frequency is imaginasy = +i, and the gradient term then suppresses
the growth of highk modes. As a result, the growth ragewill exhibit a maximum followed by

a rapid fall-off to zero as a function of the wave numBeas is familiar from other substances
exhibiting spinodal instability [2, 7]. (See Ref. [15] fon &arlier approximate treatment of this.)
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Figure 4: The growth timedyx(p,T) = 1/y vs. the wave lengtiyx = 271/k for various temperatureb at
p = pc (left) and vs. the degree of compressipripy, atT = 0 for several values ofi (right).

The spinodal growth rateg depend on the environment, specified for examplp bpdT, as
is illustrated in Fig. 4. Generally(p, 1?) vanishes along the spinodal boundary and it decreases as
a function of temperature. With the present model we find thatfastest mode fg@ = p. has a
wave length ofAq, ~ 3fm and a growth time oy =~ 1.0fm/c. As the temperature is raised, the
maximum wave numbekinax decreases as do the optimal vallgs and y,pt. While the obtained
temperature dependence is quite significant, it should degrezed that the thermal properties of
the present model may not be realistic. On the other handlgpendence q&(ﬁ,T—) on density is
more moderate in the phase region of most rapid growth (autechuclear matter [2]).

It is important to appreciate that the phase region of inlétyalior ideal fluid dynamics is
bounded by thésentropicspinodal (wherevs = 0) and it therefore lies inside the region of ther-
modynamic instabilty which is bounded by tlsethermalspinodal. There are unstable isentropic
modes wheneverZ < 0. At zero temperature this amountsdg)/vo(p) < 0, which occurs exactly
within the isothermal spinodal density region, as one wenlaect sincd =0« g = 0. However,
asT is increased, the region of isentropic instability shrifdster than the region of isothermal in-
stability and it disappears entirely Bhax= 2T. in the present model.

The above analysis was based on ideal fluid dynamics whickecees entropyg, ot = 0,
wheregH = gut is the entropy current density. We now briefly discuss theotsf of including
viscosity into the fluid-dynamic treatment. Within the nefativistic framework used for the
derivation of the above dispersion relation, the inclusibishear and bulk viscosity changes the
pressure gradient by the termD[%n + {]0-v wheren and ¢ are the shear and bulk viscosity
coefficients, respectively. The dispersion equation ia thedified accordingly,

&

w? = V2K? + & -

ﬁZ . k2
p—§k4—|[%n+Z]Fw, (5.8)

where we have assumed that the combina§ca %n + { can be regarded as constant, for sim-
plicity. Clearly, the zero-frequency modes occur for thmsavave numbers as befokes= 0 and

k = kmax, @nd the inclusion of viscosity does not afffect the logatad the spinodal boundary.
(However, if thermal conductivity were included, the smiabboundary would gradually expand
towards the isothermal boundary [10].) To leading ordes, wiscosity adds a negative imaginary
term to the frequency,—iisz/ﬁ, giving rise to an exponential damping factor. Furthermorside
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the spinodal region the collective frequencies are stilefyuimaginary,w = iy, and we find

1
£ P K2 L K
o =+ NEIE -2 KR S (59)

Thus the growth ratg. is reduced by= %Ekz/ﬁ and the optimal wave number becomes smaller
as well. Even though the qualitative features will remaia fame, the viscous effects may be
gquantitatively important [9].

In order to illustrate the key role played by the finite rang@tioducing spinodal decomposi-
tion, let us briefly consider what would happen without thadignt term. We already noted that
the resulting non-viscous dispersion relation would ehiear growth,y = |[V2|k, and thus not
favor any particular length scale. When viscosity is inelddthe growth rate would still grow
monotonically,dky; (k) > 0, but level off for largek,

Vo (K— 00) A §|v§| [1—§1p—@+...] . (5.10)

Thus the largde divergence characteristic of standard ideal fluid dynamicsld be eliminated,
but there would still not be a preferred length scale.

6. Spinodal decomposition?

In order to understand under what experimental conditipirsoslal decomposition may actu-
ally occur, we must consider how the thermodynamic conaiitio the bulk of the collision system
evolve in the course of time. Such phase trajectories wenkest for gold-gold collisions with a
variety of dynamical transport models [16], and two exars@lee shown in Fig. 5. These results
are useful for estimating which phase regions are beingoesglat given collisions energies and,
in particular, how much time is being spent in the varioudalve phase regions.
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Figure5: The combined time evolution of the energy densiggnd the net baryon densityin the center of
a Au-Au system at various (specified) beam kinetic energesptained with either the 3-fluid mod&ff)
or UrQMD (right) (adapted from Ref. [16]). The freeze-out boundary [17hisven in the lower-left corner.
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Figure 6: lllustration of how various ranges
of the collision energye probe qualitatively
different aspects of the equaiton of state: The
phase coexistence region is not entered at all
— '@‘\ until E > Ej, the highest compression occurs

= \ inside the spinodal region fds < E < Eg,

@
£ . . . .
\ \ while it happens in the deconfined phase for
N .
N N E > E,; the phase trajectory of the densest
N
IS NN
NN
Lo

part goes right through the critical point at
A :000000000000
I\

E = Ec. Thus most time is spent inside the
Density p

spinodal region whek is slightly belowEg.

Generally speaking, the prospects for spinodal decomposiain be expected to be better the
more time the bulk of the matter spends inside the region iobslal instability. Let us therefore
consider how this aspect develops with the collision enekgy the following qualitative discus-
sion, we assume that the phase diagram has the expected fthrra first-order phase transition
terminated by a critical point, as drawn schematically ig. & (see also Fig. 2). It seems natural
to introduce a number of threshold values of the collisioergnE: E;, Ea, Eg, E, Ec. Their
meaning is illustrated in Fig. 6 and they will be explainedum below.

At the lowest collision energieg < Ej, the compressions achieved are insufficient to bring
any part of the matter inside the region of phase coexiste@oasequently, at such low energies,
it would probably not be possible to probe the phase tramsiti

As the collision energy is raised abokzg, the phase trajectorfp(t), T(t)) of the most com-
pressed matter makes ever larger incursions into the ploaséstence region. Characterizing such
phase trajectories by the highest compression achigyeg(E ), this “turning point” moves gradu-
ally across the phase coexistence regiok &sraised. It first enters the spinodal region o= Ea
and it has traversed it fully fdE = Eg, reaching the other side of the coexistence regida-atE,.

At collision energies abovi,, the steady expansion of the bulk matter subsequent to ks ma
imum compression drags the phase trajectory through theeptwexistence region (and the spin-
odal region inside it). The slope of the expansion phasedtajy steepens witk (see Fig. 5)
and the traversal time becomes steadily shorter, both bedhe expansion is faster and because
the region of instability becomes narrower at the ever higixeitations encountered. At a cer-
tain “critical’collision energy,E = E., the phase trajectory passes right through the criticaitpoi
(pe, Tc) and at supercritical collision energids,> Ec, the phase trajectory will miss the unstable
phase region altogether thus making any phase-transitjoials increasingly unlikely to appear.

The evolving local thermodynamic conditions during a sadin will generally differ from one
location to another. Consequently, a single collision eggres rise to an entire bundle of phase
trajectories and the above discussion pertains to justhiheeptrajectory of the most compressed
matter of the collision system which, for a symmetric cddlis is presumably located around the
center. Furthermore, there is a dependence on the georfesttices of the collision system, such
as the nuclear sizes and the impact parameter. Thus the@meaning of the various threshold
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energies is somewhat fuzzy and they play primarily a con@@dpble. This underscores the fact
that quantitative predictions must rely on detailed dyreain¢alculations.

Nevertheless, taking guidance from existing phase trajiest extracted from various trans-
port simulations [16] (see Fig. 5), we have used the caledlgtowth rates to estimate the degree
of amplification that might occur when the collision energyadjusted to maximize the exposure
to the spinodal instabilities. The resulting amplificatemounts to one or two factors ef which
may suffice to trigger a phase separation due to the subsefyudgrer amplification from the in-
termediate metastable phase region. While this conclugi@s grounds for guarded optimism, it
also brings out the fact that a full dynamical simulationégded for a more detailed assessment
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