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1. Introduction

The phase structure of strongly interacting matter presents a focal point for research in heavy-
ion physics. Currently, RHIC at BNL is preparing for a beam energy scan that aims to identify
signals of the expected critical point, while the CBM experiment at the future FAIR at GSI will
explore the properties of compressed baryonic matter and search for the expected first-order phase
transition, and JINR in Dubna is planning NICA for studying the mixed phase.

However, it will be no easy task to extract the thermodynamicphase structure from nuclear
collision experiments. In addition to the inherent problems arising from the smallness of the col-
lision system (which renders its spatial configuration far from uniform) and its rapid evolution
(which prevents global equilibrium from being established), the experimentalist is faced with the
problem that there exists yet no suitable dynamical model with which to simulate the collisions for
the purpose of anticipating the observable effects of the phase structure.

A particularly urgent task is the identification of suitableobservables that can signal the ex-
istence of a phase transition. The present work is motivatedby possibility that the spinodal insta-
bilities that invariably accompany a first-order phase structure may cause the bulk of the collision
system to clump and thereby generate extractable correlations with sufficient specificity, in analogy
to spinodal nuclear multifragmentation [1, 2]. While some explorations of possible experimental
signals have already been made [3, 4, 5, 6], their practical utility is hampered by the lack of dy-
namical transport models that encompass the essential phase-transition physics. It is therefore not
possible to assess the degree to which those various effectsmay actually develop in a collision
setting. Nor has it been determined whether they would in fact survive the post-hadronization
expansion stage in an observable form.

An ideal transport model would explicitly evolve the microscopic degrees of freedom in the
system, which change from being partonic in the deconfined sector to being hadronic in the con-
fined sector. Such a description has not yet been developed, even for static scenarios, and one must
rely on less fundamental descriptions. While a variety of transport models have achieved con-
siderable success in reproducing observables for high-energy collisions over a range of energies,
they need further development before they can be applied to phase transition dynamics. Roughly
speaking, the current microscopic transport models do not yet contain a phase transition, while the
fluid-dynamical models are spatially local and therefore unable to capture the key feature of the
spinodal phenomenon, namely the spontaneous emergence of acharacteristic length scale [7]. We
illustrate here the particular importance of incorporating a finite range into the treament.

The presentation is organized as follows. First we construct a schematic two-phase equation of
state to serve as a concrete framework for our discussions. We then introduce a gradient term in the
compressional energy and derive the corresponding generalized thermodynamics. On this basis, we
consider the equilibium interface between the two coexisting phases and derive both the associated
interface tension and the density profile. Subsequently, within the framework of fluid dynamics, we
consider harmonic distortions in uniform matter and derivethe corresponding dispersion relation
for both ideal and viscous scenarios; we discuss especiallythe spinodal phase regiuon where such
modes are amplified exponentially. Finally, we discuss in a qualitative manner the strategy for
achieving spinodal phase separation in actual nuclear collisions. A more detailed discussion can be
found in Ref. [8].
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2. Equation of state

For the purpose of making numerical illustrations, we adopta schematic model that is a gen-
eralization of a classical gas in a density-dependent mean field. The resulting equation of state has
certain generic deficiencies and the results should therefore not be taken at face value. The model
assumes that the energy densityε is the sum of a compressional termw0(ρ), whereρ is the (net)
baryon density, and a thermal term,κ = d

2ρT, whered is an adjustable parameter. Denoting the
entropy density of the corresponding generalized ideal classical gas by◦σ(κ ,ρ), we may write the
entropy density as a function ofε andρ asσ(ε ,ρ)= ◦σ(ε−w0(ρ),ρ). The associated Lagrange co-
efficients are thenβ (ε ,ρ) = ∂εσ(ε ,ρ) = 1/T(ε ,ρ) andα(ε ,ρ) = ∂ρσ(ε ,ρ) =−µ(ε ,ρ)/T(ε ,ρ).
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Figure 1: The equation of statepT(ρ): The
pressurep, as obtained with the schematic
model, shown for a number of temperatures,
T/Tc = 0, 1

4, 1
2, 3

4,1, 5
4, 3

2, as a function of the
density ρ . The phase coexistence (solid)
and the spinodal (dashed) boundaries are in-
dicated; they coincide at the critical point
(dot). The pressure has extrema at the spin-
odal boundaries and so decreases in between,
rendering the matter mechanically unstable.

By interpolating between a hadron gas and a quark-gluon plasma it is possible to adjustw0(ρ)

so that those two phases coexist atT = 0. The resulting equation of statepT(ρ) is shown in Fig. 1,
with the critical point as well as the regions of phase coexistence and spinodal instability indicated.
Figure 2 shows the corresponding phase diagram using eitherρ or µ , together with a number of
isentropic phase trajectories. The density is more convenient in the presence of a phase transition.
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Figure 2: The phase diagram implied by the equation of state shown in Fig. 1 in theρ-T (left) and the
µ-T (right) plane, together with several isentropic trajectories (dashed curves). Changing fromρ to µ
causes the two coexisting phase points (red curve) to coincide, while the phase trajectories exhibit significant
contortions that extend between the two spinodal boundaries (green curve) below the critical temperature.
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3. Gradient corrections

As a simple way to take approximate account of finite range effects, we employ a gradient
correction in the compressional energy and write the local interaction-energy density on the form

w̃(r) = w0(ρ̃(r)) + 1
2C(∇ρ̃(r))2 = w0(ρ̃(r)) + 1

2a2εg

(

∇ρ̃(r)
ρg

)2

. (3.1)

The strength of the gradient term has the formC = a2εg/ρ2
g , whereρg is a (baryon) charge density

andεg is an energy density. We choose the phase point(ρg,εg) to be in the middle of the phase
coexistence region,ρg

.
= ρc = 4.70ρ0 and εg

.
= εT=Tc/2(ρc) = 1

2(w0(ρc) + εc) = 561MeV/fm3.
The gradient term is then governed by the lengtha which we consider to be somewhat adjustable.
(A gradient term was also used in recent fluid dynamic studiesof the hadron-quark transition [9].)

In order to derive the corresponding thermodynamic relations, we assume that the entropy
density still has the form̃σ(r) = ◦σ(κ̃(r), ρ̃(r)) = ◦σ(ε̃(r)− w̃(r), ρ̃(r)), whereκ̃(r) = ε̃(r)− w̃(r)
is the local thermal density. The local Lagrange coefficients can then be obtained from a variation
of the total entropyS[ε̃(r), ρ̃(r)] =

∫

dr σ̃(r) with respect tõε(r) andρ̃(r), β̃ (r) = δS/δ ε̃(r) and
α̃(r) = δS/δ ρ̃(r), yielding an explicit gradient term in the chemical potential µ̃(r). The resulting
expression for the local pressure is then

p̃(r) = σ̃(r)T̃(r)− ε̃(r)+ µ̃(r)ρ̃(r)+C(∇ρ̃(r))2 , (3.2)

It follows that ∇(p̃(r)/T̃(r)) = −ε̃(r)∇β̃ (r)− ρ̃(r)∇α̃(r), which can be regarded as a general-
ization of the familiar bulk relationδ (p/T) = −εδβ −ρδα ; it ensures that ˜p(r) will be constant
wheneverT̃(r) and µ̃(r) are. We also note that the gradient correction (3.1) to the compressional
energy density migrates directly into the local free energydensity,

f̃T(r) = κT(ρ̃(r))+ w̃(r)−T◦σ(κT(ρ̃(r)), ρ̃(r)) = fT(ρ̃(r))+ 1
2C(∇ρ̃(r))2 . (3.3)

4. Interface equilibrium

Once the finite-range effects have been included, we may treat the interface between the two
coexisting phases. We denote the coexistence values of temperature, chemical potential, and pres-
sure byT0, µ0, andp0. and assume that the two systems have a planar interface perpendicular to the
x direction. Global equilibrium requires that the total entropy Sbe constant under variationsδ ε̃(x)
andδ ρ̃(x) that conserve the total energyE =

∫

dxε̃(x) and the total (net) chargeB =
∫

dxρ̃(x),

0
.
= δS−β0δE−α0δB =

∫

dx
{

[β̃ (x)−β0]δ ε̃(x)+ [α̃(x)−α0]δ ρ̃(x)
}

, (4.1)

thus implying spatial constancy of temperature and chemical potential,β̃ (x)
.
= β0 andα̃(x)

.
= α0.

Because the temperature is constant we may work in the canonical framework and proceed as
Ravenhallet al. [10]. Since∂ρ fT(ρ) = µT(ρ), the condition for equilibrium is then expressed as

0
.
= δ

∫

dx
[

f̃T0(x)−µ0ρ̃(x)
]

=

∫

dx
[

µT0(ρ̃(x))−C∂ 2
x ρ̃(x)−µ0

]

δ ρ̃(x) . (4.2)
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Figure 3: Left: The surface profilẽρ(x) for T = 0 (solid) andT = 1
2Tc (dashed), using as a reference for

x the positionx0 where the chemical potential equals the coexistence value of the bulk chemical potential,
µT(ρ̃(x = x0))

.
= µ0(T). The limiting (coexistence) densities are shown by the horizonthal lines, while

the bottom curve is the interface location functiong(x) = ∂xρ̃(x)/ρ21 [11] for T = 0. Right: The specific
interface tensionγ12

T0
[12] as a function of the coexistence temperatureT0 for various values of the rangea.

Thus the equilibrium profilẽρ(x) is determined by the following differential equation,

C∂ 2
x ρ̃(x)

.
= µT0(ρ̃(x))−µ0 = ∂ρ∆ fT0(ρ̃(x)) , (4.3)

where∆ fT0(ρ) is the difference between the free energy density of a uniform system of densityρ ,
fT0(ρ), and the “Maxwell” free energy density associated with the corresponding phase mixture,
f M
T0

(ρ)≡ fT0(ρi)+ µ0(ρ −ρi)≤ fT0(ρ) whereρi is either one of the two coexistence densities. The
density profile is then given by

ρ̃(x) = ρ̃(x0)+ ρc

∫ x

x0

[

2
εg

∆ fT0(ρ̃(x))

]
1
2 dx

a
, (4.4)

wherex0 is some location where the density is known, for example the location where∆ fT0(ρ̃(x))
has its maximum and henceµT0(ρ̃(x0)) = µ0. The resulting density profile is illustrated in Fig. 3.

The local excess in the free energy density due to the interface is given by

f̃ 12
T0

(x) = f̃T0(x)− f M
T0

(ρ̃(x)) = ∆ fT0(ρ̃(x))+ 1
2C(∂xρ̃(x))2 = 2∆ fT0(ρ̃(x)) . (4.5)

so the total deficit in free energy per unit interface area, the interface tension [12], is given by

γ12
T0

=

∫ +∞

−∞
dx f̃ 12

T0
(x) = 2

∫

dρ̃(x)
∂xρ̃(x)

∆ fT0(ρ̃(x)) = a
∫ ρ2

ρ1

dρ
ρg

[

2εg∆ fT0(ρ)
]

1
2 . (4.6)

This quantity can be obtained without explicit knowledge ofthe profileρ̃(x) and it scales directly
with the length parametera; it is shown in Fig. 3 as a function of temperature. It decreases steadily
from its maximum value atT = 0 until it vanishes atTc. With the (somewhat arbitrary) parameter
values adopted, the zero-temperature interface tension isγ12

0 ≈ 16 MeV/fm3, about 16 times the
familiar nuclear surface tension. This value lies near the lower end of the rather wide range of
expected values for the tension between quark and nuclear matter (typical low values are 10−
20MeV/fm2, while typical high values are 50−100MeV/fm2, see for example Refs. [13, 14]).
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5. Collective modes

The gradient correction affects the dynamical response to small density undulations imposed
on static and uniform matter,δε(r) = ε̃(r)−ε andδρ(r) = ρ̃(r)−ρ. (The local change in the
pressure is then of a similar form,δ p(r) = p̃(r)− p̄ with p̄ = p(ε,ρ).) Assuming (at first) that the
time evolution is described by ideal fluid dynamics, the equations of motion then arise from energy-
momentum conservation,∂µTµν = 0, together with conservation of (baryon) charge,∂µ jµ = 0.

Assuming that the local flow velocitiesv(r) are non-relativistic, we may ignorev2 and thus
put γ to unity. This yields the following five equations of motion,

0 = ∂µTµ0(r, t) ≈ ∂tδε + h̄∂iv
i , (5.1)

0 = ∂µTµ i(r, t) ≈ h̄∂tv
i + ∂ iδ p , (5.2)

0 = ∂µ jµ(r, t) ≈ ∂tδρ + ρ̄∂iv
i , (5.3)

whereh̄ = ε + p is the enthalpy density of the uniform system. As usual, the equations forTµν can
be combined to a sound-wave equation, while a comparison of the first and last equations yields
the evolution of the density disturbance in terms of that of the energy disturbance, so

∂ 2
t δε(r) = ∇2δ p(r) , h̄∂tδρ(r) = ρ̄ ∂tδε(r) . (5.4)

It is straightforward to see that, to leading order in the disturbancesδε(r) andδρ(r), the local
pressure is ˜p(r) ≈ p(ε̃(r), ρ̃(r))−Cρ∇2ρ(r). The first term is the usual local-density approxi-
mation, i.e. the pressure is calculated as in uniform matter that has beenprepared with the local
density values, while the second term arises from the gradient correction to the chemical potential.
Therefore, to the same order, we have

∇2δ p(r) ≈ pε ∇2ε(r)+ pρ∇2ρ(r)−Cρ∇4ρ(r) , (5.5)

wherepε ≡ ∂ε p(ε ,ρ) andpρ ≡ ∂ρ p(ε ,ρ) evaluated at the local phase point(ε ,ρ) = (ε̃(r), ρ̃(r)).
For harmonic undulations,δε(r) = εk exp(ik · r− iωt) andδρ(r) = ρk exp(ik · r− iωt), the

continuity equation requires̄hρk =ρεk. The dispersion relation is then readily obtained from (5.4),

ω2
k = v2

sk2 +C
ρ2

h̄
k4 = v2

sk2 +a2εg

h̄

ρ2

ρ2
g

k4 . (5.6)

with vs being the isentropic speed of sound,

v2
s =

ρ
h

(

∂ p
∂ρ

)

s
= pε +

ρ
h̄

pρ = −
T̄

h̄

[

h̄2σεε +2h̄ρσερ +ρ2σρρ
]

, (5.7)

where σερ ≡ ∂ε ∂ρσ(ε ,ρ) evaluated at(ε ,ρ) = (ε,ρ), etc.. The first term is what emerges in
ordinary ideal fluid dynamics and it is perfectly linear,ωk = vsk. That pathological behavior is
modified by the gradient term which generally increasesω2

k . In the spinodal region, wherev2
s is

negative, the collective frequency is imaginary,ωk = ±iγk, and the gradient term then suppresses
the growth of high-k modes. As a result, the growth rateγk will exhibit a maximum followed by
a rapid fall-off to zero as a function of the wave numberk, as is familiar from other substances
exhibiting spinodal instability [2, 7]. (See Ref. [15] for an earlier approximate treatment of this.)
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Figure 4: The growth timestk(ρ ,T) = 1/γk vs. the wave lengthλk = 2π/k for various temperaturesT at
ρ = ρc (left) and vs. the degree of compression,ρ/ρ0, atT = 0 for several values ofλk (right).

The spinodal growth ratesγk depend on the environment, specified for example byρ andT̄, as
is illustrated in Fig. 4. Generallyγk(ρ, T̄) vanishes along the spinodal boundary and it decreases as
a function of temperature. With the present model we find thatthe fastest mode forρ = ρc has a
wave length ofλopt ≈ 3fm and a growth time oftopt ≈ 1.0fm/c. As the temperature is raised, the
maximum wave numberkmax decreases as do the optimal valueskopt andγopt. While the obtained
temperature dependence is quite significant, it should be recognized that the thermal properties of
the present model may not be realistic. On the other hand, thedependence ofγk(ρ, T̄) on density is
more moderate in the phase region of most rapid growth (as in dilute nuclear matter [2]).

It is important to appreciate that the phase region of instability for ideal fluid dynamics is
bounded by theisentropicspinodal (wherevs = 0) and it therefore lies inside the region of ther-
modynamic instabilty which is bounded by theisothermalspinodal. There are unstable isentropic
modes wheneverv2

s < 0. At zero temperature this amounts to∂ 2
ρ w0(ρ) < 0, which occurs exactly

within the isothermal spinodal density region, as one wouldexpect sinceT = 0⇔ σ = 0. However,
asT is increased, the region of isentropic instability shrinksfaster than the region of isothermal in-
stability and it disappears entirely atTmax = 3

5Tc in the present model.

The above analysis was based on ideal fluid dynamics which conserves entropy,∂µσ µ = 0,
whereσ µ = σuµ is the entropy current density. We now briefly discuss the effects of including
viscosity into the fluid-dynamic treatment. Within the non-relativistic framework used for the
derivation of the above dispersion relation, the inclusionof shear and bulk viscosity changes the
pressure gradient by the term−∇[4

3η + ζ ]∇ · v whereη and ζ are the shear and bulk viscosity
coefficients, respectively. The dispersion equation is then modified accordingly,

ω2 = v2
sk2 +a2εg

h̄

ρ2

ρ2
g

k4− i[4
3η + ζ ]

k2

h̄
ω , (5.8)

where we have assumed that the combinationξ ≡ 4
3η + ζ can be regarded as constant, for sim-

plicity. Clearly, the zero-frequency modes occur for the same wave numbers as before,k = 0 and
k = kmax, and the inclusion of viscosity does not afffect the location of the spinodal boundary.
(However, if thermal conductivity were included, the spinodal boundary would gradually expand
towards the isothermal boundary [10].) To leading order, the viscosity adds a negative imaginary
term to the frequency,− i

2ξ k2/h̄, giving rise to an exponential damping factor. Furthermore, inside

7
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the spinodal region the collective frequencies are still purely imaginary,ω = iγ±, and we find

γ± = ±

[

|v2
s|k

2−a2εg

ε
ρ2

ρ2
g

k4 + 1
4ξ 2 k4

h̄2

]
1
2

− 1
2ξ

k2

h̄
. (5.9)

Thus the growth rateγ+ is reduced by≈ 1
2ξ k2/h̄ and the optimal wave number becomes smaller

as well. Even though the qualitative features will remain the same, the viscous effects may be
quantitatively important [9].

In order to illustrate the key role played by the finite range in producing spinodal decomposi-
tion, let us briefly consider what would happen without the gradient term. We already noted that
the resulting non-viscous dispersion relation would exhibit linear growth,γk = |v2

s|k, and thus not
favor any particular length scale. When viscosity is included, the growth rate would still grow
monotonically,∂kγ+(k) > 0, but level off for largek,

γ+(k→ ∞) ≈
ρ
ξ
|v2

s|

[

1− 3
4

ρ2

ξ 2

|v2
s|

k2 + . . .

]

. (5.10)

Thus the large-k divergence characteristic of standard ideal fluid dynamicswould be eliminated,
but there would still not be a preferred length scale.

6. Spinodal decomposition?

In order to understand under what experimental conditions spinodal decomposition may actu-
ally occur, we must consider how the thermodynamic conditions in the bulk of the collision system
evolve in the course of time. Such phase trajectories were studied for gold-gold collisions with a
variety of dynamical transport models [16], and two examples are shown in Fig. 5. These results
are useful for estimating which phase regions are being explored at given collisions energies and,
in particular, how much time is being spent in the various unstable phase regions.
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different aspects of the equaiton of state: The
phase coexistence region is not entered at all
until E > E1, the highest compression occurs
inside the spinodal region forEA < E < EB,
while it happens in the deconfined phase for
E > E2; the phase trajectory of the densest
part goes right through the critical point at
E = EC. Thus most time is spent inside the
spinodal region whenE is slightly belowEB.

Generally speaking, the prospects for spinodal decomposition can be expected to be better the
more time the bulk of the matter spends inside the region of spinodal instability. Let us therefore
consider how this aspect develops with the collision energy. For the following qualitative discus-
sion, we assume that the phase diagram has the expected form with a first-order phase transition
terminated by a critical point, as drawn schematically in Fig. 6 (see also Fig. 2). It seems natural
to introduce a number of threshold values of the collision energy E: E1, EA, EB, E2, Ec. Their
meaning is illustrated in Fig. 6 and they will be explained inturn below.

At the lowest collision energies,E < E1, the compressions achieved are insufficient to bring
any part of the matter inside the region of phase coexistence. Consequently, at such low energies,
it would probably not be possible to probe the phase transition.

As the collision energy is raised aboveE1, the phase trajectory(ρ(t),T(t)) of the most com-
pressed matter makes ever larger incursions into the phase coexistence region. Characterizing such
phase trajectories by the highest compression achieved,ρmax(E), this “turning point” moves gradu-
ally across the phase coexistence region asE is raised. It first enters the spinodal region forE = EA

and it has traversed it fully forE = EB, reaching the other side of the coexistence region atE = E2.

At collision energies aboveE2, the steady expansion of the bulk matter subsequent to its max-
imum compression drags the phase trajectory through the phase coexistence region (and the spin-
odal region inside it). The slope of the expansion phase trajectory steepens withE (see Fig. 5)
and the traversal time becomes steadily shorter, both because the expansion is faster and because
the region of instability becomes narrower at the ever higher excitations encountered. At a cer-
tain “critical”collision energy,E = Ec, the phase trajectory passes right through the critical point
(ρc,Tc) and at supercritical collision energies,E > Ec, the phase trajectory will miss the unstable
phase region altogether thus making any phase-transition signals increasingly unlikely to appear.

The evolving local thermodynamic conditions during a collision will generally differ from one
location to another. Consequently, a single collision event gives rise to an entire bundle of phase
trajectories and the above discussion pertains to just the phase trajectory of the most compressed
matter of the collision system which, for a symmetric collision, is presumably located around the
center. Furthermore, there is a dependence on the geometricfeatures of the collision system, such
as the nuclear sizes and the impact parameter. Thus the precise meaning of the various threshold
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energies is somewhat fuzzy and they play primarily a conceptual role. This underscores the fact
that quantitative predictions must rely on detailed dynamical calculations.

Nevertheless, taking guidance from existing phase trajectories extracted from various trans-
port simulations [16] (see Fig. 5), we have used the calculated growth rates to estimate the degree
of amplification that might occur when the collision energy is adjusted to maximize the exposure
to the spinodal instabilities. The resulting amplificationamounts to one or two factors ofe, which
may suffice to trigger a phase separation due to the subsequent further amplification from the in-
termediate metastable phase region. While this conclusiongives grounds for guarded optimism, it
also brings out the fact that a full dynamical simulation is needed for a more detailed assessment
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