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1. Introduction

Many observables have been proposed as possible signaturesfor the deconfined plasma of
quarks and gluons that is produced during initial stage of ultra-relativistic heavy ion collisions.
These include enhanced production of dileptons of intermediate invariant masses [1] and baryons
made of multi-strange quarks [2], increased emission duration [3, 4], suppressed production of
charmonia [5], large anisotropic flows of hadrons [6], quenching of minijets with large transverse
momenta [7], and scaling of hadron elliptic flows according to their constituent quark content [8].
Most of these observables have been studied during past manyyears in experiments at RHIC in-
volving Au+Au collisions at center-of-mass energies

√
sNN = 62, 130, and 200 GeV. Studying

these signatures using various theoretical models, such asthe statistical model [9, 10], the hydro-
dynamic model [11, 12, 13], the transport model [14, 15, 16, 17, 18, 19, 20, 21, 22, 23], the quark
coalescence model [24, 25, 26, 27], and the perturbative QCDapproach [28, 29], has provided
convincing evidence that the quark-gluon plasma QGP has indeed been produced in these colli-
sions. Moreover, these studies have indicated that the quark-gluon plasma produced at RHIC is
strongly interacting with transport coefficients very different from those given by the perturbative
QCD [30].

Heavy ion collisions at energies much higher than that at RHIC will soon be available at the
Large Hadron Collider (LHC), and it is expected that the produced quark-gluon plasma will have
even higher temperature and smaller baryon chemical potential than that produced in heavy ion
collisions at RHIC. On the other hand, a quark-gluon plasma with finite baryon chemical potential
is expected to be produced from heavy ion collisions in low energy runs at RHIC and at future
FAIR. Although lattice QCD calculations have not been able to address the properties of quark-
gluon plasma at finite baryon chemical potential, theoretical models such as the PNJL model have
shown that the smooth crossover from the quark-gluon plasmato the hadronic matter transition
predicted by lattice gauge calculations for zero baryon chemical potential would change to a first-
order phase transition when the baryon chemical potential becomes sufficient large [31]. Heavy ion
collisions in low energy runs at RHIC and at FAIR thus allow the possibility to study the location
of the critical endpoint in the QCD phase diagram at which thefirst-order phase transition changes
to a smooth crossover. It is therefore of great interest to make predictions for above mentioned
observables in these collisions based on what we have learntfrom heavy ion collisions at high
energy runs at RHIC. Using a multiphase transport (AMPT) model, which has been quite useful
in understanding experimental results at RHIC, we have carried out such a study. In particular, we
have made predictions on the rapidity distributions of various hadrons, their elliptic flows, two-
pion correlation functions, and the effects of a first-orderquark-gluon plasma to hadronic matter
phase transition in Au+Au collisions at center-of-mass energy of

√
sNN = 7 GeV (corresponding to

a beam energy of aboutEbeam≈ 25 GeV/nucleon in the laboratory system with fixed target), that is
available in the low-energy runs at RHIC and at FAIR.

2. A multiphase transport model

Before presenting predicted results, we review briefly the AMPT model [14, 15, 16, 32, 33,
34, 35]. It is a hybrid model that uses minijet partons from hard processes and strings from soft
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processes in the heavy ion jet interaction generator (HIJING) model [36] as initial conditions for
modeling heavy-ion collisions at ultra-relativistic energies. Time evolution of resulting minijet
partons, which are largely gluons, is described by Zhang’s parton cascade (ZPC) model [37]. At
present, this model includes only parton-parton elastic scatterings with an in-medium cross section
given by the perturbative QCD, i.e.,

dσp

dt
≃ 9πα2

s

2(t −µ2)2 , σp ≃
9πα2

s

2µ2

1
1+ µ2/s

, (2.1)

whereαs is the strong coupling constant and is taken to have a value of0.47, ands and t are
the usual Mandelstam variables for squared center-of-massenergy and four momentum transfer,
respectively. The effective screening massµ depends on the temperature and density of the partonic
matter but is taken as a parameter in ZPC for fixing the magnitude and angular distribution of the
parton scattering cross section. After minijet partons stop interacting, they are combined with their
parent strings, as in the HIJING model with jet quenching, tofragment into hadrons using the Lund
string fragmentation model as implemented in the PYTHIA program [38]. The final-state hadronic
scatterings are further modeled by a relativistic transport (ART) model [39, 40]. This default AMPT
model has been quite successful in describing measured rapidity distributions of charged particles,
particle to antiparticle ratios, and spectra of low transverse momentum pions and kaons in heavy
ion collisions at the Super Proton Synchrotron (SPS) and RHIC [15]. It has also been useful in
understanding the production ofJ/ψ [32] and multistrange baryons [35] in these collisions.

Since the initial energy density in ultra-relativistic heavy ion collisions is expected to be much
larger than the critical energy density at which the hadronic matter to quark-gluon plasma transition
would occur [16, 32, 41], the AMPT model has been extended to allow the initially excited strings
to melt into partons [42]. In this version, hadrons that would have been produced from the HIJING
model are converted to their valence quarks and/or antiquarks. Interactions among these partons are
again described by the ZPC parton cascade model. Because inelastic scatterings are not included in
the current version of the ZPC model, only quarks and antiquarks from melted strings are present
in the partonic matter. The species independence of the cross section used in the ZPC model
compensates, however, for the absence of gluons in the earlystage.

The transition from the partonic matter to the hadronic matter in the AMPT with string melting
is achieved using a coordinate-space quark coalescence model, i.e., two nearest quark and antiquark
are combined into mesons and three nearest quarks or antiquarks are combined into baryons or anti-
baryons that are closest to the invariant masses of these parton combinations. This coalescence
model is somewhat different from the ones that are based on the overlap of hadron quark wave
functions with the quark distribution functions in the partonic matter and used extensively for
studying the production of hadrons with intermediate transverse momenta [24, 25, 26]. The final-
state scatterings of produced hadrons from quark coalescence are again described by the ART
model.

Using parton scattering cross sections of 6-10 mb, the AMPT model with string melting is
able to reproduce the centrality and transverse momentum (below 2 GeV/c) dependence of hadron
elliptic flows [42] and higher-order anisotropic flows [43] as well as the pion interferometry [44]
measured in Au+Au collisions at

√
sNN = 130 GeV at RHIC [45, 46, 47]. It has also been used to

study the kaon interferometry [48] in these collisions as well as many other observables at
√

sNN =

3
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200 GeV, such as the pseudorapidity [49], system size [50, 51], and flavor [52, 53] dependence of
anisotropic flows.

3. Trajectories of central heavy ion collisions in the QCD phase diagram
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Figure 1: (Color online) Left window: Time evolution of net quark and energy densities. Right window:
Trajectories of central heavy ion collisions in the QCD phase diagram of temperature and net quark chemical
potential.

Using the AMPT model with string melting, we have studied thetime evolution of net quark
density and energy density of produced partonic matter in relativistic heavy ion collisions. This is
shown in the left window of Fig. 1 for the central cell in the produced matter, which is taken to
have a transverse radius of 1 fm and a longitudinal dimensionof 5% of the time after the two nuclei
have fully overlapped in the longitudinal direction. If we assume that these partons are in thermal
equilibrium, their temperature can then be determined. Thetime evolution of the temperature and
baryon chemical potential of produced partonic matter is shown in the right window of Fig. 1. It is
seen that the duration of the partonic stage decreases slightly with collision energy, about 4.2 fm/c
in RHIC high energy runs and less than 3 fm/c at lower energies and at FAIR. Although the baryon
chemical potential (given by 3µq) in RHIC high energy heavy ion collisions is small, it increases
significantly as the collision energy decreases.

4. Rapidity distributions

The number of particles produced in a heavy ion collision provides valuable information on
the energy density of the matter formed during the initial stage. Shown in Fig. 2 are the rapidity
distributions of identified hadrons in central (b = 0 fm) Au+Au collisions at

√
sNN = 7 GeV. The

total multiplicity density at midrapidity is about 450, which is about a factor of three lower than
that in high energy runs at RHIC. This is consistent with an initial energy density of the central
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Figure 2: (Color online) Rapidity distributions of identified hadrons in central Au+Au collisions at
√

sNN =

7 GeV from the AMPT model with string melting.

cell, which is about 10 GeV/fm3, that is also about a factor of three lower than that in high energy
runs at RHIC. On the other hand, the net baryon rapidity density at midrapidity in central heavy
ion collisions at this lower energy is about 135 and is almosthalf of that for pions, which is in
contrast to heavy ion collisions in high energy runs at RHIC where the net baryon rapidity density
at midrapidity is less than 10. For strange hadrons, more hyperons than kaons are produced in
heavy ion collisions at low energies as a result of the large baryon chemical potential. This is again
in sharp contrast to what was observed in high energy runs at RHIC, where the number of produced
kaons is order of magnitude larger than that of hyperons. Thelarge baryon chemical potential also
leads to a yield of multistrange baryons in these collisionsthat is comparable to that in higher
energy collisions at RHIC .

5. Anisotroic flows

In non-central heavy ion collisions, the spatial anisotropy of initially produced matter in the
transverse plane is converted to the momentum anisotropy ofproduced particles. Results for
Au+Au collisions at

√
sNN = 7 GeV and impact parameterb = 7 fm with a parton scattering cross

section of 10 mb are shown in Fig. 3. As shown in the left window, the quark elliptic flows at low
transverse momentum follow the mass ordering with the charmquark elliptic flow much smaller
than that of light and strange quarks. Their values become, however, similar at high transverse mo-
mentum and are comparable to those in high energy runs at RHIC. The elliptic flows of identified
hadrons, such as the pion, kaon, nucleon, and various hyperons, are shown in the middle window of
Fig. 3 using the scaled elliptic flow and transverse momentum, i.e, both are divided by the number
of constituent quarks in a hadron. It is seen that the constituent quark number scaling expected
from the naive coalescence model, in which only quarks with same momentum can coalescence
into a hadron, is not exactly satisfied as the coalescence model used in the AMPT model for de-
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Figure 3: (Color online) Differential elliptic flows of quarks (left window), light (middle window) and heavy
(right window) hadrons in central Au+Au collisions at

√
sNN = 7 GeV.

scribing the hadronization of the partonic matter is based on the coordinate-space consideration
as described in Section 2. In the right window of Fig. 3, the elliptic flows of charmed meson and
charmonium are shown. For charmed mesons, their elliptic flow v2,D(pT) at transverse momentum
pT is obtained using the quark coalescence or recombination model of Ref.[27], i.e.,

v2,D(pT) ≈ v2,c((mc/mD)pT)+v2,q((mq/mD)pT). (5.1)

In the above,v2,c and v2,q are elliptic flows of charm and light quarks, respectively; while mD,
mc = 1.5 GeV, andmq = 300 MeV are, respectively, the masses of charmed meson, charm quark,
and light quark. Because of the much larger charm quark mass than those of light quarks, the
elliptic flows of charmed mesons are close to that of heavy quarks. Eq.(5.1) can be generalized to
heavy mesons with hidden charm, i.e., the charmoniumJ/ψ that consists of a charm quark and its
antiquark. Its elliptic flow atpT is then twice that of charm quark atpT/2 and is also shown in the
right window of Fig. 3.

The elliptic flows of heavy mesons have already been studied in high energy runs at RHIC via
measurement of their decay electrons [54, 55]. The observedlarge value in Au+Au collisions at√

sNN = 200 GeV is consistent with large elliptic flows of heavy quarks, particular that of charmed
quarks as shown in Refs.[52, 56] based on the quark coalescence model. Without heavy quark
elliptic flow, resulting heavy meson elliptic flow would be much smaller as shown in Ref.[57].
Studying heavy meson elliptic flow in low energy runs at RHIC and at FAIR is thus very useful
for understanding the dynamics of heavy quarks in the partonic matter with finite baryon chemical
potential.

As in heavy ion collisions from high energy runs at RHIC, the elliptic flows in heavy ion
collisions from low-energy runs at RHIC and at FAIR would be significantly reduced if the partonic
matter is not produced during the initial stage of the collisions.

6. Effects of density fluctuation due to a first-order phase transition

As mentioned previously, the baryon-rich partonic matter produced in heavy ion collisions
from RHIC low-energy runs and at FAIR is expected to undergo afirst order phase transition to

6



P
o
S
(
C
P
O
D
 
2
0
0
9
)
0
3
4

Partonic effects Che Ming Ko

-30 -20 -10 0 10 20
-30

-20

-10

0

10

20

-30

-20

-10

0

10

20

30

-30 -20 -10 0 10 20 -30 -20 -10 0 10 20 -30 -20 -10 0 10 20 30

freezeout

 

 

y 
(fm

)

x (fm)

initial

 

 

y 
(fm

)

default

 

 

string melting

 

 

x (fm)

 

 

 

4 X V-non-fluc

 

 

x (fm)

 

 

 

fluctuation

 

 

x (fm)

0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

0.3 0.4 0.5 0.3 0.4 0.5 0.2 0.4 0.6

 

 

N ev
en

t

p
T
 (GeV)

 freezeout 
           σ=0.015 GeV

 initial
         σ=0.037 GeV 

default

 

 

p
T
 (GeV)

 freezeout 
           σ=0.013 GeV

 initial
         σ=0.028 GeV 

string melting

 

 

p
T
 (GeV)

 freezeout 
           σ=0.014 GeV

 initial
         σ=0.03 GeV 

4 X V non-fluc

 

p
T
 (GeV)

 freezeout 
           σ=0.013 GeV

 initial
         σ=0.046 GeV 

fluctuation

0 2 4 6 8
0

30

60

90

120

0 2 4 6 8 0 2 4 6 0 2 4 6 8

 

 

Nd

N ev
en

t

default
<N

d
>=3.77

σ=1.5

Nd

 

 

string melting
<N

d
>=4.98

σ=1.9

Nd

 

 

4 X V non-fluc
<N

d
>=1.86

σ=1.12

Nd

 

fluctuation
<N

d
>=1.84

σ=0.98

Figure 4: (Color online) Top window: Initial (upper panel) and final (lower panel) hadronic spatial distri-
butions in different scenarios. Middle window: Fluctuation of hadron mean transverse momentum. Bottom
window: Fluctuation of final deuteron number. All are for central Au+Au collisions at

√
sNN = 7 GeV.

the hadronic matter, instead of the smooth crossover transition of the quark-gluon plasma with low
baryon chemical potential that is produced in RHIC high energy runs. To model the effect due to
a first-order quark-gluon plasma to hadronic matter phase transition, which is at present absent in
the AMPT model, a large density fluctuation is introduced in the hadronic matter formed immedi-
ately after hadronization. Specifically, we assume that thehadronic matter after a first-order phase
transition consists of clusters of various sizes. This is achieved by redistributing hadrons produced
in the AMPT with string melting in a volume that is four times larger but keeping their momenta
unchanged. Furthermore, the average number of clusters is taken to be five and follows a Pois-
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son distribution as in the analysis of the nuclear matter gas-liquid phase transition in low-energy
heavy ion collisions [58]. An example of the hadron spatial distribution is shown in the upper right
panel of the top window in Fig. 4, and it is compared with thosein the default AMPT, AMPT
with string melting, and AMPT with string melting together with four times larger initial hadronic
matter volume but without fluctuation, shown in other panelsof the top window. The final hadronic
spatial distributions in these four scenarios are shown in the lower panels of the top window and
are seen to be different. As probes of these different scenarios, we have considered the fluctuation
of final hadron mean transverse momentum (middle window) as well as that of final deuteron yield
(bottom window), which is obtained by the coalescence modelusing the proton and neutron phase
distributions at freeze out [59]. It is seen that the root mean square fluctuation of final hadron
mean transverse momentum is smaller than that of initial hadron mean transverse momentum, and
its value is similar in all scenarios. As a result, the mean transverse momentum fluctuation is not
sensitive to the initial density fluctuation of produced hadrons. For the deuteron number fluctua-
tion, increasing the initial volume of the hadronic matter reduces the final deuteron yield compared
to those from the default AMPT and AMPT with string melting. The final deuteron number is,
however, essentially independent of whether there is an initial fluctuation in the hadronic matter
density. Although the initial density fluctuation is destroyed by final-state hadronic scatterings, it
cannot exist without an increasing initial volume of hadronic matter as a result of the first-order
phase transition.

7. Two-pion correlations

Particle interferometry based on the Hanbury-Brown Twiss (HBT) effect can provide infor-
mation not only on the spatial extent of the emission source but also on its expansion velocity
and emission duration [3, 4, 60, 61]. In particular, the longemission time as a result of phase
transition from the quark-gluon plasma to the hadronic matter in relativistic heavy ion collisions
is expected to lead to an emission source which has a much larger radius in the direction of the
total transverse momentum of detected two particles (Rout) than that (Rside) perpendicular to both
this direction and the beam direction (Rlong). Although the extracted ratioRout/Rside from a Gaus-
sian fit to the measured two-pion correlation function in Au+Au collisions at

√
sNN = 130 GeV is

close to one [62, 63, 64], the source function extracted fromthe imaging method seems to show a
longer tail in the out direction compared to other directions [65]. The small value ofRout/Rside has
been attributed to strong space-time and momentum correlations in the emission source [66]. Since
the quark-gluon plasma produced in RHIC low-energy runs andat FAIR is expected to undergo a
first-order phase transition, the emission source is expected to also have a large radius in the out
direction.

Using the emission function obtained from the AMPT model with string melting and a parton
scattering cross section of 10 mb for central (b = 0 fm) Au+Au collisions at

√
sNN = 7 GeV,

we have evaluated the correlation functionC2(Q,K) in the longitudinally comoving frame using
the program Correlation After Burner [67] that takes into account final-state strong and Coulomb
interactions between two charged pions. In Fig. 5, we show the calculated correlation function
including final-state Coulomb interactions for midrapidity (−0.5 < y < 0.5) charged pions with
transverse momentum 125< pT < 225 MeV/c as a function of invariant momentum in the three

8
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Figure 5: (Color online) Two-pion correlation functions in central Au+Au collisions at
√

sNN = 7 GeV.

scenarios of default AMPT (filled circles), AMPT with stringmelting (filled squares), and AMPT
with density fluctuation after hadronization (filled triangles). It is seen that the correlation function
becomes narrower when a partonic matter is formed, and the width is further reduced if the initial
volume of the hadronic matter after phase transition becomes larger when the phase transition is
first-order.

8. Charm suppression

The partonic matter with a finite baryon chemical potential that is expected to be formed
in RHIC low energy runs and at FAIR offers a possibility to test the idea recently introduced in
Ref.[56] that the large charm quark elliptic flow observed inhigh energy runs at RHIC is a result
of resonance scattering between charm quark and anti-lightquarks in the produced partonic matter.
Specifically, the scattering cross section between a charm quark and an light antiquark or a charm
antiquark and a light quark is given by

σc̄q→c̄q(s
1/2) =

1
9

2J+1
4

π
k2

Γ2
D

(s1/2−mD)2 + Γ2
D/4

(8.1)

in terms of the charm meson massmD, width ΓD and spinJ. Taking mD = 2 GeV, ΓD = 0.3−
0.5 GeV, charm quark massmc = 1.5 GeV, light quark massmq = 5− 10 MeV and including
scalar, pseudoscalar, vector and axial vector charmed mesons gives a peak cross section of about
6 mb at the charmed meson mass. The drag coefficient for charm quark or antiquark in a baryon-
free quark-gluon plasma can then be calculated using the scattering amplitudeM of the resonance
scattering via

γ(|p|,T) = ∑
i

(

〈|M |2〉− 〈|M |2p ·p′〉/|p|2
)

. (8.2)

In the above,p andp′ are, respectively, the momenta of the heavy quark before andafter a col-
lision. Since the resonance scattering cross section is isotropic, it leads to a drag coefficient of

9
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γ ∼ 0.16c/fm which is about a factor of three larger than that given by the pQCDt-channel di-
agrams. Since there are about equal numbers of light quark and antiquarks in the quark-gluon
plasma produced in high energy runs at RHIC, charm and anticharks thus lose same appreciable
energy when traversing through the baryon-free quark-gluon plasma.
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Figure 6: (Color online) Nuclear suppression factor for charmed meson and anticharmed mesons in baryon-
rich quark-gluon plasma.

For heavy ion collisions in RHIC low-energy runs and at FAIR,resonance scattering affects
charm and anticharm quarks differently as there are more light quarks than light antiquarks in
the baryon-rich quark-gluon plasma produced in these collisions, with the quark drag coefficients
decreased by the factore−µ/T for charm quarks and increased by the factoreµ/T for anti-charm
quarks. For Au+Au collisions at

√
sNN = 7 GeV, the initial temperature and baryon chemical

potential of produced quark-gluon plasma areT0 = 225 MeV andµ0 = 300 MeV according to
the AMPT model as shown in Fig.1. Taking the quark-gluon plasma to have a spherical shape
with an initial radiusR0 = 7 fm, the time evolution of the radius can then be determined from
the time evolution of temperature and baryon chemical potential given in Fig.1 if we assume that
the entropy of the quark-gluon plasma is conserved during its expansion. For the distribution of
initially produced charm and anti-charm quarks, their momentum spectra are generated by the
PYTHIA program [68] and they are assumed to be produced uniformly inside the quark-gluon
plasma. As charm and anti-charm quarks traverse through theexpanding quark-gluon plasma, they
loose their momentum according todp/dt ≈−γ p. The resulting nuclear modification factorsRAA

for charm and anti-charm quarks, defined as the ratios of their final to initial momentum spectra are
shown in Fig.6. It is seen that the nuclear modification factor for anti-charm quarks is much smaller
than that for charm quarks. This result is not much affected by final-state hadronic reactions as also
shown in the figure. We therefore expect that the momentum spectrum of charmed mesons will
be less quenched than that of anti-charmed mesons from heavyion collisions in RHIC low-energy
runs and at FAIR, which thus provides a very interesting opportunity to study the dynamics of
charm and anti-charm quarks in the net baryon-rich quark-gluon plasma.
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9. Seeing QCD first-order phase transition with phi mesons

Figure 7: The dilepton invariant mass spectrum in heavy ion collisions. The solid line is obtained with a
first-order phase transition while the dotted line is from the scenario without the quark-gluon plasma. From
Ref.[69].

Another possible way to verify the existence of a first-orderQGP to hadronic matter phase
transition in heavy ion collisions is to study phi meson production through its emitted dileptons.
Because of its narrow width of∼ 4 MeV, a phi meson in heavy ion collisions normally decays to
dileptons mainly at the time when it freezes out from the hadronic matter. If there is a first-order
QGP to hadronic matter phase transition, dileptons from phimesons decay during the mixed phase
of the first-order phase transition can also be appreciable as a result of the long duration of the
mixed phase. Since the phi meson mass may be reduced in hot anddense medium, the emitted
dileptons from phi mesons in the mixed phase thus have lower invariant masses than those from
phi mesons decay at freeze out. As a result, the dilepton invariant mass spectra would have an
additional peak at a lower mass than that corresponding to the free phi mass mass. In Ref. [69],
this effect is studied in a hydrodynamic model for heavy ion collisions that includes a first-order
phase transition. With a temperature-dependent phi meson mass determined from the QCD sum
rule [70], the resulting phi meson invariance spectrum indeed shows another peak between the
ρ/ω and free phi meson peaks as shown by the solid line in Fig. 7. Although the double phi peak
feature in the dilepton invariant mass spectrum would remain if the quark-gluon plasma to hadronic
matter phase transition is a crossover but lasts a sufficientlong time [71], it becomes a shoulder in
the absence of the quark-gluon plasma as shown by the dashed line in the figure. Since the flow
velocity is smaller at phase transition than at hadronic freeze out, the inverse slope parameter of
the low mass phi meson transverse momentum spectrum is also expected to be smaller than that of
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the transverse momentum spectrum of normal phi mesons and thus reflects more closely the phase
transition temperature.

10. Conclusions

Heavy ion collisions in the low-energy runs at RHIC and at FAIR is expected to produce a
quark-gluon plasma that has an appreciable baryon chemicalpotential, allowing thus the possibility
to study the location of the critical endpoint in the QCD phase diagram, where the quark-gluon
plasma to hadronic matter transition changes from a crossover to a first-order phase transition.
Using a multiphase transport model, that includes interactions in both initial partonic and final
hadronic matters and the transition between these two phases of matter via a quark coalescence
model, we have studied the effect of partonic interactions on the elliptic flows of identified hadrons
as well as the effect of density fluctuations due to a first-order transition between the quark-gluon
plasma and hadronic matter on fluctuations of hadron mean transverse momentum and produced
deuteron number and on two-pion correlations. We have foundthat strong partonic interactions
during the partonic stage of the collisions enhance significantly the particle elliptic flow and also
leads to an approximate constituent quark number scaling ofthe elliptic flows of identified hadrons.
Although the presence of density fluctuation due to a first-order phase transition has little effect
on the fluctuation of final hadron mean transverse momentum, it affects appreciably the yield of
produced deuterons and the width of the two-pion correlation function. We have further found that
the net baryon-rich quark-gluon plasma formed in these collisions provides the possibility to test
the resonance scattering mechanism for charm energy loss inquark-gluon plasma, which has been
quite successful in understanding the charm energy loss andelliptic flow in heavy ion collisions
at RHIC, i.e., a larger energy loss of anti-charm quarks thanquarks in heavy ion collisions at
lower energies. The long duration expected for a first-orderphase transition can also lead to the
appearance of a lower mass peak between theρ/ω andφ mesons in the dilepton invariance mass
spectrum as a result of the lower phi meson mass in the mixed phase of the quark-gluon plasma
to hadronic matter transition. Many interesting phenomenaare thus expected to be observed in
RHIC low-energy runs and at FAIR, and they not only are of their own intrinsic interest but will
also provide the possibility to study the location of the critical endpoint in the QCD phase diagram,
where the crossover transition at low baryon chemical potential changes to a first-order transition
when the baryon chemical becomes sufficient large.
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