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1. Introduction

Lattice-QCD has predicted two phase transitions at finite temperature and density [1]. One
is quark deconfinement, and the other one is chiral symmetry restoration. It has also been shown
that both of them are crossover at vanishing baryon chemical potentialµB [2]. Much speculation
from model investigation indicates that the crossover turns to be a true first-order phase transition
for larger values ofµB. In QCD phase diagram, the endpoint of the first order phase transition to
analytical crossover is referred to as critical endpoint, or critical point [3]. However, it is still a
difficult problem to determine the critical point from first principle of lattice calculation. Whether
the critical points of these two phase transitions occur at the same or different critical temperature
is unclear[4].

Locating the critical points is essential for mapping the QCD phase diagram [5]. The exper-
iments of current Relativistic Heavy Ion Collider (RHIC) at BNL, the SPS at CERN, and future
FAIR at GSI are aimed to produce the conditions which make the QCD phase transitions occur, and
finally to locate the critical points. If they are in the region accessible to current relativistic heavy
ion collisions, they could be discovered experimentally. But how to locate them from experimental
observable has not been settled yet.

In relativistic heavy ion collisions, the size of the formed matter is limited. More central
collision makes the overlapped area larger, and therefore the large number of strongly interacting
nucleons. This makes the transition of quark deconfinement possible.

In infinite system, the critical related observable is divergent at critical point. But in finite
system, this divergence can not be practically observed. It becomes finite and changes with system
size. In the vicinity of critical point, the observable at different system sizes follow the finite-size
scaling.

Finite-size scaling was proposed from phenomenological [6] and renormalization-group [7]
theories, and was approved by the Monte Carlo simulations of various universal classes [8]. Finite-
size scaling not only describe the behavior of the thermodynamic quantities in the vicinity of critical
point, but also indicates the position of critical point and the values of critical exponents in infinite
system.

It is found recently that the finite-size scaling holds not only for thermodynamic quantities like
order-parameter, susceptibility, and so on, but also for various cluster sizes [9] and their fluctua-
tions [10]. Therefore, the finite-size scaling of various critical related observable could be used to
identify critical point and its critical exponents.

2. Locating critical point by finite-size scaling in relativistic heavy ion collisions

A critical related observableQ in relativistic heavy ion collisions is a function of incident
energy

√
s and system sizeL. Incident energy

√
s is the controlling parameter, like temperatureT,

or external fieldh in thermodynamic systems. WhenL is much larger than the microscopic length
scale and

√
s is near the critical incident energy

√
sc, the observableQ(

√
s,L) can be written in a

finite-size scaling form [6, 7, 8]

Q(
√

s,L) = Lλ/νFQ(τL1/ν) (2.1)
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whereτ = (
√

s−√sc)/
√

sc is the reduced variable andλ is the critical exponent of the observable.
ν is the critical exponent of the correlation lengthξ = ξ0τ−ν . Finite-size scaling indicates that the
observable at different system sizes can be re-scaled to an identical scaling functionFQ with scaled
variableτL1/ν .

When incident energy
√

s 6= √
sc, the scaled variableτL1/ν 6= 0 and the scaling functionFQ

changes with incident energy and system sizeL. At
√

s=
√

sc, the scaled variable (τL1/ν = 0) is
independent of system sizeL, and scaling function,

FQ(0) = Q(
√

sc,L)L−λ/ν , (2.2)

becomes a constant. In the plot ofQ(
√

s,L)L−λ/ν vs.
√

s for different system sizeL, the critical
point [

√
sc, FQ(0)] is afixed point, where all curves ofQ(

√
s,L)L−λ/ν with respect to

√
sat different

sizeL converge to. Reversely, the appearance of fixed point indicates the existence of critical point.
If the critical exponentλ = 0, the fixed point can be obtained directly from the incident energy

dependence of this observable at different system sizes, like Binder cumulant ratio [11], which is
used widely in determining critical point in thermodynamic system with finite size.

If the critical exponentλ 6= 0 and is unknown, the fixed point can be found by investigating the
incident energy dependence ofQ(

√
s,L)L−a at different system sizes. If a fixed point is observed

at a = a0 when tuning the parameter−a from −∞ to ∞, then the postion of fixed point indicates
the critical incident energy anda0 is the ratio of critical exponents, i.e.,λ/ν = a0.

The critical point can also be found from the system size dependence of the observable. Taking
logarithm in the both sides of Eq. (2.1), it becomes

lnQ(
√

s,L) = λ/ν lnL+ lnFQ(τL1/ν). (2.3)

At critical point τ = 0, the second term is constant andlnQ(
√

sc,L) with respect tolnL becomes
a straight line with slope equal to the ratioλ/ν . When system is away from the critical point, the
second term depends on the system size andlnQ(

√
s,L) with respect tolnL deviates from a straight

line.
In relativistic heavy ion collisions, the critical incident energy and the ratio of critical expo-

nent are both unknown. In this case, we have firstly to examine whether there is any fixed-point and
best straight-line behavior. If there is a fixed-point, the corresponding position of the fixed-point
and parametera = a0 will determine the critical incident energy and the ratio of critical exponent,
respectively. Then around the fixed-point, the best scaling (Eq.(1)) fitting for all data at different
system sizes will finally determine the critical exponentν, which identifies the universality class of
the critical point. So finite-size scaling, and its critical characteristics, fixed-point and straight-line
behavior, provide a well-defined method for finding and locating the critical point in the experi-
ments of relativistic heavy ion collisions.

3. Critical bahaviour of pt and normalized pt correlations at RHIC energies

It is interesting to see if there is any fixed-point and straight-line behavior at RHIC data. In
relativistic heavy ion collision, various theoretical works predict the significant dynamic event-by-
event fluctuations and correlations in apparent temperature, mean transverse momentum, multiplic-
ity, and conserved quantities at critical point [12]. The centrality dependence ofpt correlation for
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Figure 1: (Color online) The energy dependence ofpt correlations at different sizesL (or centralities). Data
come from RHIC/STAR [13].

Au+ Au collisions at 4 incident energies are well presented [13]. We take it as an example. But it
should be mentioned that the errors of the data at

√
s= 20 GeV are much larger than that at other

incident energies. Thept correlation is defined as

P(
√

s,L) =
1
Ne

Ne

∑
k=1

Nk

∑
i=1

Nk

∑
j=1,i 6= j

(pt,i−〈〈pt〉〉)(pt, j −〈〈pt〉〉)

Nk(Nk−1)
(3.1)

whereNe is the number of event,pt,i is the transverse-momentum of thei-th particle, andNk is the
total number of particles in thek-th event.〈〈. . .〉〉 is overall event average transverse momentum.

If the system has a critical point at incident energy
√

sc and corresponding critical behavior
are survived after final state interactions, thept correlation in the vicinity of

√
sc could be written

in a scaling form

P(
√

s,L) = Lλ/νFP(τL1/ν) (3.2)

whereλ is the critical exponent ofpt correlation.
The size of the formed matter is mainly limited by the size of overlapping area, which is

proportional to the number of participant nucleons and is quantified as centrality. So the initial
mean size of the formed matter can be approximately estimated by the square root of participants,√

Npart. We choose dimensionless (or relative) size

L =
√

Npart/
√

2NA (3.3)

as initial size of the system. WhereNA is the number of nucleons of incident nucleus.
In general, the system sizeL′ at transition is larger than the initial sizeL and is a monotonically

increasing function ofL, e.g.,L′ = cL1+δ with δ ≥ 0. If we useL′ instead ofL in finite-size scaling
in Eq. (3.2), the scaling exponents will be modified, but the position of critical point does not
change. The most interesting thing is to find the position of critical point. So we will use the initial
sizeL in finite-size scaling in the following discussions.

Firstly, we change the centrality dependence ofpt correlation at different collision ener-
gies [13] to the incident energy dependence at different centralities. The results are shown in
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Figure 2: (Color online) (a) The width ofP(
√

s,L)L−a distribution for varying parameter−a at 4 given

incident energies,σ2[P(
√

s,L)L−a]. (b) pt correlation multiplied by the factor,L−a(1)
0 , with−a(1)

0
= 2.09.

Fig. 1. Since in the most peripheral collisions, the size of the formed matter is too small to be
inside the asymptotic region of finite-size scaling, we choose six centralities at mid-central and
central collisions to do the analysis. The initial sizes of the formed systems at the 6 centralities
are listed in the legend of Fig. 1. It is clear that at a given incident energy, the correlation strength
increases with the decrease of system size. The influence of finite size is obvious.

Then we multiplyP(
√

s,L) by a size factorL−a with −a varying from−∞ to ∞. The width
of P(

√
s,L)L−a distribution at a given incident energy quantifies whether those points of different

sizes are close to each other. It is defined asσ2[P(
√

s,L)L−a] = σ6
i=1[P(

√
s,Li)−〈P(

√
s,L)〉]2. For

an ideal fixed point,σ2
min[P(

√
s,L)L−a] = 0. Theσ2[P(

√
s,L)L−a] for different values of param-

eter−a at 4 incident energies are shown in Fig. 2(a). Where the error ofσ2[P(
√

s,L)L−a] is not
provided due to the shortage of higher order moments ofpt correlations. It is interesting to see that
there is a minimum value for varying parameter−a at each given incident energy. The minimum
values at

√
s= 62 and 200 GeV are less than 2 and much smaller than that at

√
s= 20 and 130

GeV. The slopes of minimum valley at
√

s= 62 and 200 GeV are much steeper than that at other
two energies.

This shows that at
√

s= 62(or 200) GeV, all points of different sizes move firstly toward each
other, then well converge at−a(1)

0
= 2.09(or−a(2)

0
= 2.08), and finally move apart again from each

other. The results for−a(1)
0

= 2.09 are presented in Fig. 2(b), where the errors come from thept

correlations only, and the errors of centrality are not included. While at incident energies
√

s= 20
(or 130) GeV, the points of different sizes never move close to each other as those at

√
s= 62 (or

200) GeV do. So there are two fixed points around
√

s= 62and 200 GeV.

In order to confirm the position of fixed points, we study thelnL dependence oflnP(
√

s,L)
for 4 incident energies, respectively. A parabola fit,c2(lnL)2 +c1 lnL+c0, is used at each incident
energy. The better straight-line behavior should result in smaller|c2| and larger ratio of|c1/c2|.
The fit parameters,c2 andc1, for 4 incident energies are listed in Tab. 1. It shows that the better
straight-line behavior happen to be at

√
s= 62 and 200 GeV, i.e., at the same incident energies of

the fixed points. The data at these two incident energies can be well fitted by the straight lines with
slopesa(1)

0
anda(2)

0
, respectively. The results are shown in Fig. 2(a). While, the data at

√
s= 20

and 130 GeV are better fitted by parabola and shown in Fig. 2(b).
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Table 1: Parameters of parabola fits.√
s(GeV) 20 62 130 200

|c2| 1.86± 0.93 0.6± 0.09 1.56± 0.41 0.77± 0.1

|c1| 3.9±0.89 2.59± 0.09 3.43± 0.41 2.74±0.1
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Figure 3: (Color online) Double-log plots ofpt correlation with respect to size, (a): straight-line fits with
slopesa(1)

0
anda(2)

0
obtained by fixed points, and (b): parabola fits.

The same analysis has been done for the normalizedpt correlation, where the normalization
is for overall event averagept [13]. It shows exactly the same best fixed-point and straight-line
behavior at

√
s = 62 and200 GeV. Their ratios of critical exponents are both 1.1, i.e.,−a(1)

0
=

−a(2)
0

= 1.1.
So the critical incident energies are most probably around

√
s= 62 and200GeV, rather than

near
√

s = 20 and 130 GeV. The same analysis for other critical related observable, such as the
fluctuation of meanpt per event, the moments of multiplicity [12], the ratio ofK to π [14], the
third order moments of conserved charges [15] and so on, will be helpful in confirming the observed
results. The incident energy and centrality dependence of those observable are called for.

If there were additional collisions around
√

s= 62and200GeV, we could determine precisely
the critical incident energy and critical exponents by the best fitting of the finite-size scaling func-
tion. This is impossible at present since there are only two collision energies in addition to the
critical ones, and they could be outside of the asymptotic region where finite-size scaling holds.

Two critical incident energies,
√

s = 62 and200 GeV, are both within the range of critical
points estimated by lattice calculation [16]. The fact that the ratios of critical exponents at two
critical points are close is consistent with current theoretical estimation, which shows that all critical
exponents of the deconfinement transition are very close to that of chiral symmetry restoration.
Where the deconfinement and chiral symmetry restoration transitions are supposed to be the same
universities as the3-dimensional Ising model [17], and the3-dimensional O(4) model with spin
symmetry [18], respectively.

4. Summary

To the summary, we pointed out that in relativistic heavy ion collisions, the finite-size effects
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of the formed matter is not negligible. The critical related observable should follow the finite-size
scaling. The methods of finding and locating critical point of QCD phase transition are established
for the first time by finite-size scaling and its characteristics at critical point, in particular, the fixed
point and straight line behavior. As application of the method, the critical behavior ofpt correlation
and its normalized one from RHIC/STAR are demonstrated. The fixed-point and the best straight-
line behavior are observed around

√
s= 62and 200GeV.

The confirmation of this observation requires the efforts from both theoretical and experimen-
tal sides. From experimental side, it is proposed to get more and better data on other critical related
observable, and a few additional collisions around

√
s= 62 and 200 GeV. Then we can more pre-

cisely determine the critical points and critical exponents of QCD phase transitions.
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