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1. Introduction

The Standard Model (SM) is a theory invariant under the symmetry groupSU(3)c⊗SU(2)L⊗
U(1)Y. In the SM, the spontaneous symmetry breaking (SSB) mechanism is accomplished with one
scalar doublet whose vacuum expectation value (vev) is usually written as< φSM >= (0 v/

√
2)

wherev = 246 GeV. The charge operator is defined asQ = 1/2(σ3 +YI), whereσ3 is the standard
Pauli matrix,I is the 2× 2 identity matrix andY is the weak hypercharge. With this definition
Q < φSM >= 0 as it should because the vacuum has no electric charge. Had we startedwith
the most general vacuum configuration< φSM >= (v1 + iv2 v3 + iv4)/

√
2 we would still have

a massless photon. The electromagneticU(1)em can not be broken with only one doublet and
to choose the most general vacuum configuration simply amounts to a redefinition of the charge
operator.

The situation changes radically once one adds a second doublet. We havenow eight fields
that can acquire a vev. We can however use theSU(2)L ⊗U(1)Y gauge freedom to write the most
general vacuum structure as

(

0
v1eiθ1

) (

v2

v3

)

. (1.1)

The gauge boson’s mass matrix can now have four non-zero eigenvalues. The mass eigenvalue
related to the photon is given by

m2
γ =

1
8

[

v2(g2 +g′2)−
√

v4(g2 +g′2)−16g2g′2v2
1v2

2

]

(1.2)

wherev=
√

v2
1 +v2

2 +v2
3 andg andg′ are theSU(2) andU(1) gauge couplings respectively. There

are two ways to recover a massless photon: either by settingv1 = 0 (the SM case) or by choosing
v2 = 0 and the vevs are then aligned [1]. Otherwise the photon becomes massiveas a consequence
of the charged vacuum configuration.

Gauge invariance disallows not only a charge breaking vacuum but alsoa CP breaking vacuum
in the SM. Again the situation changes in THDM. Defining a CP transformation asφi → φ ∗

i , three
different types of vacua can be defined for a general THDM with all constants real,

< φ1 >N=

(

0
v1

)

< φ2 >N=

(

0
v2

)

, (1.3)

which we call the normal vacuum,

< φ1 >CB=

(

0
v′1

)

< φ2 >CB=

(

α
v′2

)

, (1.4)

for a vacuum that breaks charge conservation, and finally

< φ1 >CP=

(

0
v′′1 + iδ

)

< φ2 >CP=

(

0
v′′2

)

, (1.5)

for a CP breaking vacuum. Vacua withα andδ simultaneously non-zero are not considered because
the minimisation conditions of the potential forbid them1.

1Except for a very special case in the explicit CP breaking potential. Evenin that case, though, via a basis change,
that vacuum may be reduced to one withα 6= 0 andδ = 0.
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2. The THDM potentials

The vacuum structure of THDM has been the subject of many studies [1-11], while the vacuum
structure of an arbitrary number of doublets was studied in [12, 13]. Thescalar sector of a THDM
is built with eight independent fields, four from each doublet. The numberof independent gauge
invariants is however four due to the SM gauge invariance underSU(2)L ⊗U(1)Y with four gauge
generators2. Therefore, all properties of the potential can be studied in terms of fourindependent
gauge invariants, which we choose to bex1 = |φ1|2, x2 = |φ2|2, x3 = Re(φ†

1 φ2) andx4 = Im(φ†
1 φ2).

In terms of this basis set of gauge invariants, the most general renormalizable THDM has 14 real
parameters and can be written as

V = a1x1 + a2x2 + a3x3 + a4x4 + b11x2
1 + b22x2

2 + b33x2
3 + b44x2

4 +

b12x1x2 + b13x1x3 +b14x1x4 + b23x2x3 + b24x2x4 + b34x3x4 . (2.1)

Under the CP transformation of the formφi → φ ∗
i , x1, x2 andx3 remain the same butx4 switches

signal. Thus, the terms of the potential which are linear inx4 break CP explicitly. Therefore a
potential for which CP is not explicitly broken cannot have terms linear inx4 in eq. 2.1:a4 = b14 =

b24 = b34 = 0. This potential has 10 free parameters and can still break CP spontaneously.
To further reduce the number of parameters while keeping the model renormalizable we can

force the potential to be invariant under certain symmetries imposed to the fields. In the case
of THDM the Z2 and a softly broken globalU(1) symmetries lead [2] to two seven parameter
models with a very different phenomenology. Recently, it was shown in [14] that these are the only
two "simple" symmetries that can be imposed on THDM. In [2] an interesting relation between
CP-violation, symmetries and flavour changing neutral currents (FCNC) at tree level was found. In
fact, for the 10-parameter potential only one of the CP-breaking stationary conditions can be forced
to have no solution. This equation can be written as

b13(v′′21 +δ 2) +b23v′′22 +(b33−b44)v′′1v′′2 = a3 (2.2)

and renormalizability forcesb13 andb23 to be simultaneously either zero or non-zero. Therefore
the equation has no solution in the two following situations

b13 = b23 = a3 = 0; b33 6= b44 (φ →−φ1 ; φ2 → φ2)

b13 = b23 = b33−b44 = 0; a3 6= 0 (φ → eiθ φ1 ; φ2 → φ2). (2.3)

Hence, forcing the CP-breaking minimum not to exist leads to two phenomenologically different
7-parameter potentials. Furthermore, by extending the symmetry to the Yukawasector one avoids
the existence of FCNC at tree level. There are still two other potentials to consider: the 6-parameter
potential with an axion (exactU(1) symmetry) or a potential that softly breaksZ2 which has 8 free
parameters and can be written as

Vso f t
Z2

= a1x1 + a2x2 + a3x3 + b11x2
1 + b22x2

2 + b33x2
3 + b44x2

4 + b12x1x2 . (2.4)

2A similar counting for the SM with one doublet would naively lead to the conclusion that we would end up with
zero gauge invariants. However this reasoning does not apply to the SM due to the existence of a little group, subgroup
of the gauge group, that leaves the doublet invariant.
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From the phenomenological point of view all these models can be studied as alimiting case of
Vso f t

Z2
in the case of normal minima. Choosing as free parameters ofVso f t

Z2
the four Higgs masses,

tanβ = v2/v1, α (the rotation angle in the CP-even sector) anda3, if we seta3 = 0 we obtain the
potential with the exactZ2 symmetry,VZ2 and whena3 = −M2

A/sin(2β ) we find the potential with
the softly brokenU(1) symmetry,Vso f t

U(1).

3. Minima of different nature

Contrary to the SM, THDM can have several stationary points of different natures. The three
possible types of stationary points which we called Normal (N), Charge Breaking (CB) or CP-
breaking (CP) were defined in the introduction. Therefore, one may inquire about the possibility of
having two minima of different nature for the same set of parameters. This could pose a problem
to THDM as we could be living in a Normal minimum and suddenly tunnel to a deeper charge
breaking minimum where the photon acquires a mass. To answer this question we have to compare
the vacuum energy at the different stationary points,VCB, VCP andVN. In [3] we found a very
interesting relation between the difference of the value of the potential at a CB stationary point,
VCB, and the value of the potential at a normal stationary point,VN,

VCB − VN =
M2

H±

2v2

[

(v′1v2 − v′2v1)
2 + α2v2

1

]

, (3.1)

wherev2 = v2
1 + v2

2 andM2
H± is the value of the squared mass of the charged Higgs scalar, evaluated

at the normal stationary point. The normal stationary point is a minimum if all squared scalar
masses are positive. Hence, this equation tells us that if the normal stationarypoint is a minimum,
it is definitely below the charge breaking stationary point. Furthermore, in ref. [3] we proved that
in this case the charge breaking stationary point is a saddle point. The stabilityof the normal
minimum against tunneling to a deeper charge breaking stationary point is thusensured in THDM.

A similar result holds when one compares a CP and a normal stationary point. When CP is a
good quantum number at the potential level, we found that the difference between the value of the
potential at the CP stationary point,VCP, and at the normal stationary point,VN,is given by [3]

VCP − VN =
M2

A

2v2

[

(v′′1 v2 − v′′2 v1)
2 + δ 2v2

2

]

. (3.2)

M2
A is now the value of the squared pseudoscalar mass at the normal stationarypoint. Again, if

the normal stationary point is a minimum, positivity ofM2
A ensures that the CP stationary point

is above it. Furthermore, I. Ivanov has proved [11] that in this situation, the CP stationary is a
saddle point. As the CP stationary point is also uniquely determined, the stability of the normal
minimum against tunneling is guaranteed. Similar results hold for the CP breakingand for the
CB minima. If a CP breaking stationary point is a minimum, the competing normal and charge
breaking stationary points are saddle points above it - the CP breaking minimumis then a global
one. Although probably not of fundamental importance, the CB stationary point, when a minimum
is the global one.
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4. Normal minima

There is still one situation that deserves our attention - the case of two simultaneous normal
minima. The THDM can have at most two normal minima [11] and from last section we know
that minima of different nature never coexist. However we could still have two minima that had
different spontaneous symmetry breaking patterns with different massesfor the gauge bosons. In
the most general 14-parameter potential with explicit CP-violation the relation between two normal
stationary points,N1 andN2 as defined in eq. (1.5) is given by

VN2 − VN1 =
1
2

[

(

M2
H±

v2

)

N1

−
(

M2
H±

v2

)

N2

]

[

(v′′1 v2 − v′′2 v1)
2 + δ 2v2

2

]

. (4.1)

In this equation we have(v2)N1 = v2
1 + v2

2 and(v2)N2 = v′′1
2 + v′′2

2 + δ 2, and(M2
H±)N1,2 are the

squared charged scalar masses at each of theN1, N2 stationary points. This interesting relation
tells us that the deepest stationary point will be the one with the largest ratio between the square of
the charged Higgs mass and thev2. This means that the deeper minimum has the largest splitting
between the charged Higgs mass and the "theoretical"W boson mass. In a CP conserving potential,
the equation is similar but withδ = 0 because the normal minima configuration have no phases in a
CP conserving potential. However this expression adds very little to the problem of the competing
normal minima.

We have mentioned that the CB and CP stationary points are unique since they are given
by linear equations on the vevs. However, this is not true for the normal stationary points. The
stationarity conditions are always a set of two coupled cubic equations which can only be solved
analytically for the potential with the exactZ2 symmetry,VZ2, where the stationarity points are
again uniquely determined. Therefore the stationarity equations can only besolved numerically.
The question we are addressing now is the following: is it possible to have a normal minimum for
a definite set of parameters with the right gauge boson masses and have another normal minimum
below it with completely different masses for the gauge bosons? And the answer to this question
is yes as long as the soft breaking term is present. As an example we can have for Vso f t

Z2
a local

minimum with mH = mH± = mA = 300 GeV,mh = 100 GeV andmw = 80.4 GeV and a global
minimum withmH = mA = 436 GeVmH± = 365 GeV,mh = 190 GeV andmw = 107.5 GeV. The
vacuum energy difference between the two isVG−VL = −4.2×108. Hence, tunneling effects can
occur in this situation and the subject needs further and more detailed study.Note however that
all potentials are well behaved for the CP breaking minima no matter how small the CP violation
phase is because the CP breaking minima is uniquely determined. Finaly, only thepotential with
the exactZ2 symmetry guarantees that the minimum, being a normal one, is unique. Even the
competing normal stationary points with one of the vevs set to zero are aboveit. For a discussion
on this point see [10].

5. Conclusions

In this section we try to sum up our present knowledge about the tree-level vacuum of THDM in
the following points [2, 3, 8, 10, 11]:
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• THDM bounded from below have no maxima (except for the trivial);

• THDM have at most two minima;

• Minima of different nature never coexist;

• Unlike Normal minima, CB and CP minima are uniquely determined;

• If a THDM has only one normal minimum then this is the absolute minimum - all other
stationary points if they exist are saddle points and above it;

• If a THDM has a CP breaking minimum then this is the absolute minimum - all other sta-
tionary points if they exist are saddle points and above it;

• THDM with no explicit CP breaking show problems for two competing normal minima;

• The THDM with an exactZ2 symmetry has several interesting features: the minimization
equations are uniquely determined which is not true when the soft breakingsymmetry term
is present; being in a normal minimumautomaticallyguarantees tree-level vacuum stability -
no extra conditions have to be imposed; it is the only THDM where the only masses present
in all scalar couplings are the ones in the corresponding interaction vertex- again this is
no longer true when the soft breaking term is present. It has however the drawback of not
allowing for CP violating minima. This version of the THDM is not related to the MSSM,
where the existence of the soft breaking term is mandatory to avoid the existence of an axion.
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