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Neutrino scattering with nuclei

1. Introduction

There is an extensive experimental effort aiming at a precise determination of neutrino oscil-
lation parameters. However, neutrino oscillation resultsdepend on the neutrino energy—a quantity
which can not be measured directly but has to be reconstructed from the hadronic debris coming
out of the neutrino-nucleus reaction inside the detector. Areliable reconstruction of the neutrino
kinematics and the initial scattering process has to account for in-medium modifications and, in
particular, for final state interactions inside the target nucleus. They can, e.g., through intra-nuclear
rescattering, change particle multiplicities and also redistribute their energy.

Those effects can be simulated with our fully coupled channel GiBUU transport model where
the neutrino first interacts with a bound nucleon producing secondary particles which are then trans-
ported out of the nucleus. We use a formalism that incorporates recent form factor parametriza-
tions and apply, besides Fermi motion and Pauli blocking, important ingredients of the many-body
problem such as mean-field potentials, in-medium spectral functions and RPA correlations. The
modeling of final state interactions includes a large variety of possible interactions channels and,
furthermore, particles with an in-medium width are transported off-shell.

This article is structured in the following way: First we introduce our model for the interaction
of neutrinos and electrons with bound nucleons. We then outline our transport model used to de-
scribe final state interactions (FSI). Thereafter, some sample results forνA scattering are presented.
Finally, we apply our model to describe recent observationsof the LBL experiments MiniBooNE
and K2K.

2. GiBUU model

Lepton induced scattering in the GiBUU model is treated as a two step process: First, the
leptons scatter of nucleons embedded in the nuclear medium.Then, the outcome of this initial
reaction is propagated through the nucleus, using a hadronic transport approach. More details can
be found in Ref. [1].

2.1 Initial vertex

We focus on the charged current (CC) (νN → ℓ−X) reaction, but discuss also the electromag-
netic (EM) (ℓ−N → ℓ−X) one used as a benchmark for our neutrino calculations.

We treat the nucleus as a local Fermi gas of nucleons bound in amean field potential. The
total reaction rate for the scattering of a lepton with four-momentumk = (k0,k) off a nucleon with
momentump = (E,p), going into a lepton with momentumk′ = (k′0,k

′) is given by an incoherent
sum over all nucleons (impulse approximation)

dσEM,CC

dω dΩ
=

A

∑
j=1

(

dσ tot
EM,CC

dω dΩ

)

j
, (2.1)

with ω = k0−k′0, Q2 = −(k−k′)2 andΩ = ∠(k,k ′). The cross sections on the rhs of Eq. (2.1) are
medium-modified (see below).
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Elementary input cross sections. In the intermediate energy region (k0 ∼ 0.5−2GeV), the cross
section is dominated by quasielastic (QE) scattering (eN→ e′N′ andνN → ℓ−N′) and resonance
excitation1 (eN→ e′R and νN → ℓ−R). Furthermore, we account for non-resonant single-pion
backgrounds for botheN→ e′πN′ andνN → ℓ−πN′. Thus we assume

dσ tot
EM,CC

dω dΩ
=

dσ QE
EM,CC

dω dΩ
+∑

R

dσR
EM,CC

dω dΩ
+

dσ BG
EM,CC

dω dΩ
, (2.2)

where dσ BG
EM,CC also contains contributions from resonance-background interference.

Omitting phase space factors, the cross section for QE scattering and resonance excitation is
given by [2]

dσ QE,R
EM,CC

dω dΩ
∝ A (E′,p′) LµνHµν

QE,R, (2.3)

wherep′ = (E′,p′) is the four-momentum of the outgoing nucleon andA (E′,p′) gives the spectral
function for the outgoing baryon.Lµν is the leptonic tensor.

The QE hadronic tensorHµν
QE can be parametrized in terms of vector and axial form factors

(see, e.g., our earlier work [3]). The vector form factors are taken from the latest analysis by Bodek
et al. [4]; a dipole ansatz withMA = 0.999GeV [5] is used for the axial ones.

The resonance hadronic tensorHµν
R depends on the specific resonance. For spin 1/2 resonances

with positive parity (e.g. P11(1440)) we find for the hadronic currentJµ
1/2+ = Vµ

1/2−Aµ
1/2 with

Vµ
1/2−Aµ

1/2 =
FV

1

(2MN)2

(

Q2γµ +/qqµ)+
FV

2

2MN
iσ µαqα +FAγµγ5 +

FP

MN
qµγ5, (2.4)

and for states with negative parity (e.g. S11(1535)) we useJµ
1/2− = [Vµ

1/2−Aµ
1/2]γ

5.

For spin 3/2 resonances with positive parity as the P33(1232), we haveJαµ
3/2+ = [Vαµ

3/2 −Aαµ
3/2]γ5

with

Vαµ
3/2 =

CV
3

MN
(gαµ

/q−qαγµ)+
CV

4

M2
N

(gαµq· p′−qα p′µ)+
CV

5

M2
N

(gαµq· p−qα pµ)+gαµCV
6 (2.5)

and

−Aαµ
3/2 =

[

CA
3

MN
(gαµ

/q−qαγµ)+
CA

4

M2
N

(gαµq· p′−qα p′µ)+CA
5 gαµ +

CA
6

M2
N

qαqµ
]

γ5; (2.6)

for the ones with negative parity (e.g. D13(1535)) we useJαµ
3/2− =Vαµ

3/2 −Aαµ
3/2. As an approximation,

resonances with spin greater than 3/2 are treated within thespin 3/2 formalism.
The vector form factorsFV

1,2 (CV
3,4,5,6) present in CC scattering are related to the electro-

magnetic transition form factorsFN
1,2 (CN

3,4,5,6) with N = p,n and those again to helicity ampli-
tudes [6, 7, 8, 9, 10], which can be extracted from electron scattering experiments. We apply the
results of the recent MAID2005 analysis [11] which includes13 resonances withW < 2 GeV; all
of them are implemented in our model—a list is given in Table 1.

The lack of precise data renders the determination of the axial form factors difficult. Pion pole
dominance and the PCAC hypothesis allow on one side to relateFP to FA (CA

6 to CA
5 ) and on the

1mainly P33(1232)
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name MR [GeV] J I P Γtot
0 [GeV] ΓπN

0 /Γtot
0 axial coupling

P33(1232) 1.232 3/2 3/2 + 0.118 1.00 1.17
P11(1440) 1.462 1/2 1/2 + 0.391 0.69 -0.52
D13(1520) 1.524 3/2 1/2 - 0.124 0.59 -2.15
S11(1535) 1.534 1/2 1/2 - 0.151 0.51 -0.23
S31(1620) 1.672 1/2 3/2 - 0.154 0.09 -0.05
S11(1650) 1.659 1/2 1/2 - 0.173 0.89 -0.25
D15(1675) 1.676 5/2 1/2 - 0.159 0.47 -1.38
F15(1680) 1.684 5/2 1/2 + 0.139 0.70 0.43
D33(1700) 1.762 3/2 3/2 - 0.599 0.14 -0.84
P13(1720) 1.717 3/2 1/2 + 0.383 0.13 0.29
F35(1905) 1.881 5/2 3/2 + 0.327 0.12 0.15
P31(1910) 1.882 1/2 3/2 + 0.239 0.23 -0.08
F37(1950) 1.945 7/2 3/2 + 0.300 0.38 0.24

Table 1: Properties of the resonances included in our model. The polemassMR, spinJ, isospinI , parityP,
the vacuum total decay widthΓtot

0 , the branching ratio intoπN and the axial coupling are listed (see text for
details on the extraction of the axial coupling). The resonance parameters are taken from Ref. [12].

other side to extract the axial couplingFA(0) (CA
5 (0)) [10] (given in Table 1). We assume a dipole

form with M∗
A = 1GeV forFA and allCA

5 except for the P33(1232).CA
3 andCA

4 are set to zero for all
resonances except the P33(1232).

For the ∆ resonance, some experimental information is available from ANL [13, 14] and
BNL [15]. Applying the Adler model [16] whereCA

4 (Q2) = −CA
5 (Q2)/4 andCA

3 (Q2) = 0 we can
extract theQ2 dependence ofCA

5 from these data. Any update of the vector form factors requires the
axial ones to be refitted. Improving on the electromagnetic vector form factors without readjusting
the axial ones [8] will result in a worse description of the neutrino data. Assuming that PCAC holds
(i.e. the value ofCA

5 (0) is unchanged2) and neglecting the small non-resonant background in the
channelν p→ µ−π+p, we find

CA
5 (Q2) = CA

5 (0)

[

1+
aQ2

b+Q2

]

(

1+
Q2

M∆
A

2

)−2

, (2.7)

with a = −0.25 andb = 0.04GeV2 andM∆
A = 0.95GeV (set “NEW”). Formerly,a = −1.21 and

b = 2GeV2 andM∆
A = 1.28GeV (set “OLD”) were used [13, 14, 15]. With the new parameters,

good agreement with the ANL data is reached (solid line in Fig. 1). In order to illustrate the
sensitivity of the cross section to the refitted axial form factor, we show in Fig. 1 also the dashed
curve which gives the cross section obtained with the new vector form factors but the old axial
ones.

2This is in contrast to the work of Hernandezet al. [17] which takes it as a free parameter. Since we rely on PCAC
for all other resonance excitations (where no data are available) we prefer to keep it here, too. Furthermore, this coupling
was extracted from the BNL data in Ref. [18] and found to be consistent with the PCAC prediction.
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Figure 1: Differential cross sectiondσ
dQ2 averaged over the ANL flux for two different sets of parameters

describingCA
5 compared to the ANL data [14]. An invariant mass cutW < 1.4GeV is applied.

In the case of electro-production, there is a wealth of data which allows to determine the single
pion background dσ bg

EM/dωdΩ. This is done by subtracting the dominant resonance contribution
from the total single-pion cross section [2, 19]

dσ bg
EM

dω dΩ
=

dσ1π
EM

dω dΩ
−∑

R

dσR
EM

dω dΩ
. (2.8)

The total single-pion production cross section on the nucleon dσ1π
EM /dωdΩ is taken from MAID [11].

Such a treatment is not possible in the neutrino case, since there are not enough experimental data
to fix the additionally necessary six axial amplitudes, hence some simplifications are required3 and
we assume

dσ bg
CC

dω dΩ
=
(

1+bNπ) dσV
CC

dω dΩ
, (2.9)

where dσV
CC is constraint by electron scattering data. The factorbNπ depends on the channel,νn→

l−nπ+ or νn → l−pπ0 (ν p → µ−π+p is assumed to be “background-free”): withbpπ0
= 3 and

bnπ+
= 1.5 a reasonable agreement with the ANL data is reached as can beseen from Fig. 3.

The full cross section Eq. (2.2) is shown in Fig. 2 for electron scattering off protons. The right
peak is dominated by the∆, the second and third resonance region are clearly visible (middle and
left peak), the QE peak is not shown. The different contributions to the cross section are shown
and compared to data. The inclusion of the 1π non-resonant background is necessary, but not
sufficient to achieve a good description of the data at higherbombarding energies (right panel);
multi-pion backgrounds should also be considered in the future. We further compare to the model
of Rein and Sehgal [21], a model widely used in neutrino eventgenerators, and find that this model
underestimates significantly the electron data as observedalso by Graczyket al. [22]. In Fig. 3
we plot the neutrino induced totalπ+ (left panel) andπ0 (right panel) production cross sections;
the different contributions are also indicated (full: resonances + background). The excitation of
higher resonances is almost invisible in the isospin 3/2 channel (upper curves in the left panel,
solid vs. long-dashed line). Again, we compare to Rein and Sehgal which gives for these integrated
cross sections results similar to ours (comparing the dotted line to our resonance contribution).

3Besides the phenomenological ansatz we are following in this work, one can apply elementary models to estimate
the single-pion non-resonant terms [6, 17, 20].
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Figure 2: Double differential cross sections for scattering of electrons off protons through resonance ex-
citation and non-resonant processes as a function of the energy of the outgoing electron (solid lines). The
dashed lines show the resonance contribution, and the dotted lines the outcome of the model of Rein and
Sehgal. We compare to data from JLAB [23].
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Figure 3: Total π+ (left) andπ0 (right) production cross sections through resonance excitation and non-
resonant processes as functions of the neutrino energy (solid lines) compared to the pion production data of
of ANL (Refs. [13] (•) and [14] (�)) and BNL ([15] (×)). The different contributions are indicated byonly
resonances(short-dashed) andonly∆ (long-dashed). The result obtained in the model of Rein and Sehgal is
also shown (dotted).

Medium modifications. The target nucleus is treated within a local Thomas-Fermi approxima-
tion as a Fermi gas of nucleons bound by a mean-field potentialUSN(p, r) which is parametrized as
a sum of a Skyrme term depending only on density and a momentum-dependent contribution.

The spectral function of a particle with four-momentump = (E,p) and massM =
√

p2 is
given by

A (E,p) =
1
π

−ImΣ(E,p)

(M2−M2
0 −ReΣ(E,p))2+(ImΣ(E,p))2

, (2.10)

with the self energyΣ(E,p) and the vacuum pole-massM0. It includes the effect of the momentum-
dependent potential on the outgoing baryons and also accounts for the in-medium collisional broad-
ening of the outgoing final states. We neglect the spectral functions of the initial states because their
widths are considerably smaller than those of the outgoing nucleons [24]. The imaginary part of
the self energy is related to the full width,Γtot, in the medium, via ImΣ(E,p) = −MΓtot, which is
given byΓtot = ΓPB+ Γcoll. Due to Pauli blocking (PB) of the final state particles in themedium,
the free decay width is lowered. On the other side, both the nucleons and the∆ resonances undergo
collisions with the nucleons in the Fermi sea. This leads to acollisional broadening of the particle
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width. To estimate this collisional broadening, we apply the low-density approximation

Γcoll(E,p) = ∑
n,p

∫

FS
σ(E,p,p′) vrel PPB

d3p′

(2π)3 , (2.11)

where we integrate over all nucleon momenta in the Fermi sphere (FS).σ(E,p,p′) denotes the total
cross section for the scattering of the outgoing nucleon/resonance with a nucleon of momentum
p′ in the vacuum;vrel denotes the relative velocity of the particle and the nucleon, PPB is the
Pauli blocking factor for the final state particles. The total cross sections are chosen according
to the GiBUU collision term (for details see [1]). The real part of the self-energy is given as
once-subtracted dispersion relation where the subtraction point is fixed by the mean fields. This
procedure guarantees the proper normalization of the spectral functions [2].

In the nucleus, the elementary cross sections discussed above for resonance excitation and
quasielastic scattering are evaluated with full in-mediumkinematics accounting for the momen-
tum-dependent mean field. Furthermore, also the flux and phase-space factors are evaluated with
in-medium four-vectors. As an approximation, we use in the medium the same form-factor para-
metrizations as in vacuum. Pauli blocking is taken into account by multiplying each cross section
on the rhs of Eq. (2.1) with the Pauli-blocking factor. In particular, the momentum dependence of
the potential and the collisional broadening of the nucleonimprove the correspondence with the
data considerably [2].

2.2 Final state interactions

The final-state interactions (FSI) of the produced particles are implemented by means of the
coupled-channel semi-classical Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model
[1]. Originally developed to describe heavy-ion collisions [25], it has been extended to describe the
interactions of pions, real and virtual photons and neutrinos with nuclei [2, 3, 19, 26, 27, 28, 29, 30].

In this model, we describe the space-time evolution of a many-particle system under the in-
fluence of a mean-field potential and a collision term by a BUU equation for each particle species.
A collision term accounts for changes (gain and loss) in the phase space density due to elastic
and inelastic collisions between the particles, and also due to particle decays into other hadrons
whenever it is allowed by Pauli blocking. The most relevant states for neutrino-induced reactions
at intermediate energies are the nucleon, the∆ resonance and the pion. For theNN cross section
and its angular dependence we use a fit to data from Ref. [31]. For the pion cross sections we use
a resonance model with the background fitted to data as shown in detail in Ref. [29]. The decay of
resonances into a pion nucleon pair is Pauli blocked if the momentum of the nucleon is below the
Fermi momentum. We allow not only for the decay of the resonances, but also for the rescattering
in the nuclear medium through processes likeRN→ NN, RN→ R′N and, for the∆ resonance we
also consider∆NN→ NNNbased on [32].

In between the collisions, all particles (also resonances)are propagated in their mean-field
potential according to their BUU equation. We emphasize again, that, due to rescattering effects
in the medium, the nucleon and the resonances acquire an additional complex self energy leading
to modified spectral functions obtained in a consistent way from the GiBUU cross sections (see
Eq. (2.11)). Thus, the nucleon and the resonances are transported off-shell in our model. Thereby

7
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Figure 4: Single proton knockout (left) and singleπ0 production (right) cross sections forν scattering off
12C (solid lines) through QE, resonance excitation and non-resonant processes. Possible origins, i.e. the
initial processes, are indicated (QE by long-dashed,∆ by short-dashed lines). Note the different scale.

we ensure that the particles are transported back to their vacuum spectral function when leaving
the nucleus.

In conclusion, FSI lead to absorption, charge exchange and redistribution of energy and mo-
mentum as well as to the production of new particles. In our coupled-channel treatment of the FSI
— in which the BUU equations are coupled through the collision term and, with less strength, also
through the potentials—our model differs from standard Glauber approaches that do not allow for
side-feeding and rescattering.

Within the GiBUU model we performed for the first time a systematic study of how quasielas-
tic scattering and resonance excitation are interconnected by FSI, focusing, on one side, on reso-
nance induced nucleon knockout and “fake” CCQE events and, on the other side, on side-feeding
effects in pion production [3, 28]. An example of the coupledchannel effect in neutrino nucleus
(here:12C) reactions is given in Fig. 4 forp andπ0 yields which are of interest in current LBL ex-
periments. We find, that even though the proton knockout is dominated by protons coming from an
initial QE reaction, the secondary protons from an initial∆ excitation contribute significantly. FSI
have also a considerable influence on CC neutrino induced pion production, where, due to isospin
relations,π+ dominate in the beginning. In the nucleus, they rescatter, get absorbed and undergo
charge exchange reactions leading to a disproportionate population of theπ0 channel. This has
been earlier observed by Paschoset al. [33]. We stress that a correct understanding of theπ0 yield
is required for a correct identification of the neutrino flavor in LBL experiments.

To conclude, we emphasize, that GiBUU is based on well-founded theoretical ingredients and
it is the only model tested in various and very different reactions using the same physics input.
In particular, an important prerequisite for any model for the interaction of neutrinos with nu-
clei is, that it provides a good description of electron- or photon-induced reactions. Within the
GiBUU model, extensive tests against existing data are possible and have been successfully per-
formed [2, 19, 34]. The GiBUU model is capable of incorporating the complexity of the nuclear
many-body problem in an extensive open-source computer code which can be downloaded from
our website [1].

3. Applications: MiniBooNE and K2K

We shall now present some examples for the application of ourmodel.
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3.1 CCQE

Charged current quasielastic (CCQE) events are commonly used in LBL experiments to de-
termine theνµ kinematics. Under the assumption that the nucleon is at restwithin the nucleus, the
neutrino energy has been reconstructed from QE events at theMiniBooNE experiment [35] using

Eν =
2(MN −EB)Eµ − (E2

B−2MNEB +m2
µ)

2[(MN −EB)−Eµ + |k ′|cosθµ ]
, (3.1)

with a binding energy correction ofEB = 34MeV and the measured muon properties. With that,
we obtain the reconstructedQ2 via

Q2 = −m2
µ +2Eν(Eµ −|k ′|cosθµ), (3.2)

Two immediate questions are raised by this procedure: (1) How good is the identification of CCQE
events? (2) How exact is the crucial assumption of two body kinematics for nucleons bound in a
nucleus where many in-medium modifications are present?

The experimental task is now to identifytrue CCQE events in the detector, i.e., muons origi-
nating from an initial QE process. FSI might lead to misidentified events, e.g., an initial∆ whose
decay pions are absorbed or which undergo “pion-less decay”can count then as CCQE event (we
call this type of background events “fake CCQE” events). We denote every event which looks like
a CCQE event by “CCQE-like”. At MiniBooNE these are all the events where no pion is detected
while at K2K these are all events where a single proton track is visible and at the same time no
pions are detected. The two methods are compared in Fig. 5. The “true” CCQE events are denoted
with the solid line, the CCQE-like events by the short-dashed one. Placing a cut only on pions,
as MiniBooNE does, leads to a considerable amount of “fake” CCQE events (left panel, the short-
dashed line is higher than the solid line). They are caused mainly by initial ∆s via the mechanism
described above; their contribution to the cross section isgiven by the dash-dotted line. On the
contrary, less CCQE-like than true events are detected withthe K2K method when one cuts both
on pions and protons (left panel, difference between short-dashed and solid line). The final state
interactions of the initial proton lead to secondary protons, or, via charge exchange to neutrons
which are then not detected as CCQE-like any more (singleproton track). We find that at K2K the
amount of fake events in the CCQE-like sample is less than at MiniBooNE (compare difference
between short-dashed and long-dashed line). We conclude that even if the additional cut on the
proton helps to restrict the background, an error of about 25% remains, since the measured CCQE
cross section underestimates the true one by that amount.

The flux averaged CCQE-likeQ2 distribution for MiniBooNE is shown in Fig. 6. The influence
of the fake CCQE events on the energy reconstruction is can beinferred from the left panel. The
distribution obtained by reconstructingQ2 for the CCQE-like events via the formulas above is
compared to the distribution of the true events (solid vs. dash-dotted line). At lowerQ2 it is higher
than the latter, but then it falls off faster. The differencebetween the two curves is caused by the
fake CCQE events whose different muon kinematic affect the reconstruction. We also find that the
reconstruction with the simplified formulas above turns outto be almost perfect when only true
CCQE events (and not the whole CCQE-like sample) are taken into account.

In the right panel of Fig. 6 we compare our calculation to the recent MiniBooNE findings:
The MiniBooNE collaboration observed a dip at lowQ2 compared to their standard Monte Carlo
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simplicity, only QE and∆ excitation were considered for the initial vertex.

prediction [35]. To reach agreement with the data, apart from changing the axial massMA by
about 25 % with respect to values obtained in earlier experiments [5], they had to modify Pauli
blocking in their Monte Carlo description! Since MiniBooNEhas not provided absolute cross
sections, a direct comparison to data is not yet possible. Instead, we compare to their CCQE-
like Monte Carlo points4 which includes the aforementioned tuning of parameters andtreat this as
experimental result. We compare these points to our calculations including different in-medium
modifications on the cross section. While the momentum dependent potential and the spectral
function had significant influence on the double differential distributions [2], they are negligible
here where we have integrated out one quantity, and do not improve the correspondence with the
data. Polarization effects due to the strong interaction among nucleons modify the QE hadronic
tensor. These are taken into account by including RPA correlations taken from Nieveset al. [36]
which lowers the spectrum at the peak and leads to a good description of the MiniBooNE points
without tuning the axial mass or any other parameter. We shall explore this in more detail in a
forthcoming publication.

4by normalizing the area
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3.2 CC1π

LBL experiments demand for a realistic description of pion yields, for two main reasons:
First, π0s are an important background inνe appearance experiments which, through their photon
decay, might affect the electron detection yielding also “fake” appearance events. Second, absorbed
pions contribute to the CCQE-like background as discussed above. Therefore, a good description
of neutrino induced pion production in nuclei taking into account complex FSI is necessary and
oversimplifications are not justified. We have shown [37] that, in particular, the ANP model applied
by Paschoset al. [33] does not incorporate the well-known properties of theN∆π dynamics in
nuclei and, therefore, is not able to give reliable results for pion spectra in the energy region of
interest.

As an example, in Fig. 7 we compare the recent K2K data for the ratio ofπ+ to QE yields [38]
with the output of the GiBUU model and obtain good agreement.

3.3 Radiative∆ decay

MiniBooNE finds in itsνµ → νe oscillation result an excess of electron like events for neutrino
energies less than 475MeV which is not yet understood [39]. Apossible source is the excitation
of a ∆ resonance via neutral current interaction followed by the radiative decay∆ → γN. Since the
MiniBooNE detector cannot distinguish between photons andelectrons, this reactions gives rise
to additional events in the low energy region. The majorνµ -induced background, however, areπ0

coming from NC interactions detectable also via their photon decay products. Of particular interest
for experiments is thus how the photon toπ0 yield changes in the nuclear medium, depending on
the∆ momentum and also the nuclear density.

In the vacuum, a rough estimate gives

σ γ
tot

σ π0

tot

(∆+/0) =
0.0056
(2/3)

= 0.008, (3.3)

where 0.0056 is the PDG branching fraction and 2/3 comes fromthe appropriate Clebsch-Gordon
coefficient for∆+/0 → π0 + N. In the medium—we took12C as used in MiniBooNE—our calcu-
lation has been performed as follows. First,∆0 and∆+ resonances are set inside the nucleus with
momentum and radius chosen randomly within a given range. Then, they are propagated out taking
into account all kind of decays and collisions. Afterwards,we calculate the totalπ0 and the photon
cross section as function of theinitial momentum (radius) of the∆. We take into account only
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Figure 8: Photon/π0 rate changes in medium as a function of∆ position (left) and momentum (right).

thoseπ0 which actually made it out of the nucleus after the final stateinteractions. With that, we
obtain for the above ratio 0.019, which represents an increase of about a factor of 2.4 compared to
the free case.

Fig. 8 shows how the photon/π0 rate changes in medium as a function of∆ momentum and
position (solid: initial∆0, dashed: initial∆+). In addition, the vacuum estimate is shown by the
long dashed line. In the momentum dependence one observes typical final state interaction effects:
Slow ∆s produce slow pions which are more likely to be absorbed in the medium than higher
energetic ones which might pass through undisturbed. As expected, the medium modification is
largest for those∆s which have been put in the middle of the carbon nucleus. However, one might
expect, that the solid/dashed lines approach the vacuum value at a radius larger than the carbon
radius. This does not happen here, because, as said before, we initialize the∆s at the beginning
with a random momentum, therefore some of them can propagateinto the nucleus and thus still
undergo FSI which then again modify the spectrum.

To conclude, the production of photons vs.π0 is enhanced in the nuclear medium due to
complex pion final state interactions reflecting in a strong dependence of density and momentum.

4. Summary

We conclude that in-medium effects inνA scattering, and in particular FSI, are important for
the interpretation of LBL oscillation experiments. The influence of nuclear many-body effects and
final state interactions have to be treated with the same degree of sophistication as the primary
production process.
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