

Resolving oscillation degeneracies with a single neutrino polarity

Davide Meloni

Dipartimento di Fisica, Universitá di Roma Tre and INFN, Sez. di Roma Tre, Roma, Italy. meloni@fis.uniroma3.it

Olga Mena

Institut de Ciéncies de l'Espai, Campus de Ciéncies, Bellaterra, Spain. mena@aliga.ieec.uab.es

Christopher Orme* and Silvia Pascoli

IPPP, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom. c.d.orme@durham.ac.uk and silvia.pascoli@durham.ac.uk

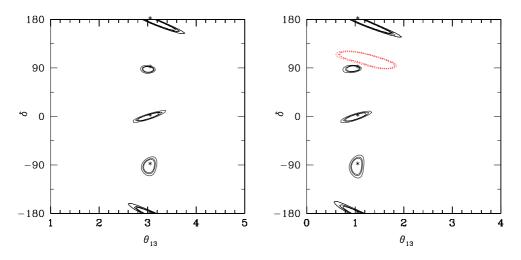
Sergio Palomares-Ruiz

CFTP, Departamento de Física, Instituto Superior Técnico, Lisboa, Portugal. sergio.palomares.ruiz@ist.utl.pt

Within the future programme of neutrino oscillation experiments that is currently under discussion, long baseline experiments will play a crucial role in providing information on the value of θ_{13} , the type of neutrino mass ordering and on the value of the CP-violating phase δ , which enters in 3-neutrino oscillations. Here, we consider a beta-beam setup with an intermediate Lorentz factor $\gamma=450$ and a baseline of 1050 km. This could be achieved in Europe with a beta-beam sourced at CERN to a detector located at the Boulby mine in the United Kingdom. We consider a neutrino run alone and show that, by exploiting the oscillatory pattern of the signal, a very good sensitivity to CP-violation and the type of hierarchy can be reached. We analyse the physics potential of this setup in detail studying two different exposures $(1\times10^{21} \text{ and } 5\times10^{21} \text{ ions-kton-years})$. In both cases, we find that the type of neutrino mass hierarchy could be determined at 99% CL, for all values of δ , for $\sin^2 2\theta_{13} > 0.03$. In the high-exposure scenario, we find that the value of the CP-violating phase δ could be measured with a 99% CL error of $\sim20^o$ if $\sin^2 2\theta_{13} > 10^{-3}$, with some sensitivity down to values of $\sin^2 2\theta_{13} \simeq 10^{-4}$.

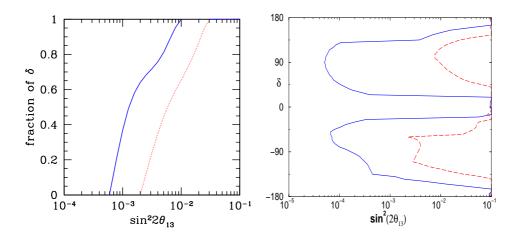
10th International	Workshop	on Neutrino	Factories,	Super bed	ams and .	Beta l	eams
June 30 - July 5 20	008						
Valencia, Spain							

*St	eaker.
-----	--------


1. Introduction

In this poster, we discuss how neutrino oscillation degeneracies could be overcome through the use of a single neutrino polarity, taking an intermediate boost beta-beam as a case study. We present a detailed numerical simulation confirming the analytical study presented in [1].

2. Simulation and results


We consider boosted 18 Ne ions directed along the CERN-Boulby baseline (1050 km) with a conservative Lorentz factor (for an upgraded SPS) of $\gamma=450$. We first consider an exposure corresponding to 10^{21} ions-kton-years. This could be obtained, for example, assuming 2×10^{18} useful ion decays per year and a 50 kton detector with 100% efficiency located at Boulby with 10 years of data taking. We also upgrade the first scenario by a factor of five in statistics. We assume a 200 MeV bin width and an energy detection threshold of 400 MeV. The muon-neutrino appearance signal has been binned in eleven bins with a bin width of 200 MeV in the [0.4, 2.0] GeV energy range, plus a unique, last bin, filled with the neutrino events from 2.0 GeV up to the end point of the spectrum at 3.06 GeV. We have taken overall systematics of 2 %, an intrinsic beam background of 0.1 %, and used atmospheric backgrounds of 0.03 per kton-yr assuming a duty factor of 10^{-3} .

We present in Fig. 1 the 90%, 95% and 99% CL contours for a fit to the simulated data from the beta-beam experiment described in the previously. The simulations are for the normal mass hierarchy and θ_{23} in the first octant ($\sin^2\theta_{23} = 0.41$ which corresponds to $\theta_{23} = 40^\circ$). The statistics considered corresponds to the optimistic high-statistics scenario. The analysis depicted in Fig. 1 includes the study of the discrete degeneracies.

Figure 1: For an exposure of 5×10^{21} ions-kton-years, 90%, 95% and 99% (for 2 d.o.f) CL contours resulting from the fits if the true values Nature has chosen are $\theta_{13} = 3^{\circ}$ (left panel) or $\theta_{13} = 1^{\circ}$ (right panel), and $\delta = 0^{\circ}$, 90° , -90° or 180° . Dashed-red contours represent the hierarchy-clone solution.

Figs. 2 summarises, for the low- and high-statistics scenarios, the physics reach of the betabeam experiment considered here. The analysis takes into account the impact of both the intrinsic

Figure 2: Left: 99% CL hierarchy resolution (2 d.o.f) and right: :Discovery at 99% CL of CP violation (2 d.o.f). The solid blue curve depicts the results assuming the statistics quoted before is improved by a factor of five.

and discrete degeneracies. Fig. 2 (left) shows the region in the ($\sin^2 2\theta_{13}$, "fraction of δ ") plane for which the mass hierarchy can be resolved at the 99% CL (2 d.o.f). Fig. 2 (right) shows the region in the ($\sin^2 2\theta_{13}$, δ) plane for which a given (non-zero) value of the CP-violating phase δ can be distinguished at the 99% CL (2 d.o.f.) from the CP-conserving case, i.e., $\delta = 0, \pm 180^{\circ}$. The results are given for both the low- and high-statistics scenarios.

3. Summary

In the present article, we have reviewed the physics reach of a beta-beam with intermediate γ and long baseline. We have considered a neutrino beam sourced by ¹⁸Ne decays with $\gamma = 450$ and a baseline of 1050 km corresponding to the CERN-Boulby mine distance. We have shown that, by exploiting the oscillatory behaviour of the signal, it is possible to fully resolve such degeneracies in a large part of the allowed parameter space.

Acknowledgments

OM was supported by the European Programme "The Quest for Unification" under contract MRTN-CT-2004-503369. CO acknowledges the support of a STFC studentship. SPR is partially supported by the Spanish Grant FPA2005-01678 of the MCT. SP acknowledges the support of CARE, contract number RII3-CT-2003-506395.

References

[1] D. Meloni, O. Mena, C. Orme, S. Palomares-Ruiz and S. Pascoli, JHEP **0807** (2008) 115 [arXiv:0802.0255 [hep-ph]].