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1. Introduction

Hawking radiation is one of the most important and prominent quantum effect inblack hole
physics. There exists a close resemblance between the black hole and lawsof thermodynamics,
even at the classical level [3]. However, Hawking [4] showed, by explicit computation of Bogolu-
obov coefficients between ’in’ and ’out’ state, that black holes do emit radiation and the spectrum
of this radiation exactly matches with the thermal radiation coming from the black body kept at ap-
propriate temperature. Apart from this there are several approaches[5, 6, 7] to calculate the fluxes
of Hawking radiation with each of them having their own merits and demerits. However, the fact
that no one derivation is truly clinching has led to open problems leading to alternative approaches
with fresh insights.

Anomaly might be recalled is a breaking of classical symmetry due to the process of quanti-
zation [8, 9]. Specifically, for instance, a gauge anomaly is breakdown of gauge symmetry, taking
the form of nonconservation of the gauge current. The cancellation gauge anomaly gives strong
constraints on model building. Similarly, a gravitational anomaly is an anomaly in thegeneral coor-
dinate invariance and it is manifested in the nonconservation of energy-momentum tensor. Role of
the anomaly in deriving the Hawking radiation is not surprising. Indeed, byusing the trace anomaly
Christensen and Fulling [10] were able to reproduce the expected results. Although this method is
restricted for conformal fields propagating in(1+ 1) dimensional black hole background, it nev-
ertheless indicate the importance of the quantum anomaly in the context of Hawking radiation.
Recently, Wilczek and collaborators [11, 12] gave an interesting method to compute the Hawk-
ing fluxes using chiral gauge and gravitational anomalies. Unlike the trace anomaly approach this
method is expected to hold in any dimensions. However, an unpleasant feature of [11, 12] was that
while the expressions for anomalies were taken to be consistent, the boundary condition required
to fix the arbitrary constants were covariant. Hawking fluxes were then obtained by cancellation of
the consistent anomalies. This was rectified by us [13] by providing a simplified derivation using
only covariant expressions of anomalies as well as boundary condition.

The approaches of [11, 12, 13] are based on the fact that effective field theory near the hori-
zon become two dimensional. From this two dimensional theory if we formally remove the modes
which are going in to the black hole then the effective theory becomes chiral.Any two dimensional
chiral theory possesses gravitational, and if gauge fields were present, gauge anomalies. Such
anomalous theories admit two types of anomalous currents and energy-momentum (EM) tensors:
the consistent and the covariant [8, 9, 14, 15]. The covariant divergences of these currents/EM
tensors yields either consistent or covariant gauge/gravitational anomalies [8, 9, 15, 16, 17]. The
consistent currents and anomaly satisfy the Wess-Zumino condition but do not transform covari-
antly under gauge or general coordinate transformation while the oppositeis true for covariant
currents and anomaly. Similar conclusions also hold for gravitational case.

In our approach [13] we have reformulated the analysis of [11, 12] in terms of only covariant
expressions. The consistent expressions were completely bypassed.There are two distinct ad-
vantages of such an approach. First, since the covariant boundary conditions are necessary, it is
conceptually clean to discuss whole analysis from covariant point of view. Another point is that
the calculations become much simpler and compact. Also, as we shall discuss later, the covariant
anomaly approach is much suitable to compute the higher spin fluxes of Hawkingradiation. In
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this case it is essential to use the covariant expressions since, only the covariant expressions of
anomalies and higher spin current are known [18].

In another new development, also based on the chiral gauge and diffeomorphism anomaly,
Hawking radiation was obtained by us [1]. An important ingredient in this approach was that,
unlike the anomaly cancellation mechanism [11, 12, 13], only the expressions of chiral covariant
currents and covariant EM tensors, obtained from the near horizon chiral effective action, together
with the covariant boundary condition, were shown to be sufficient to compute the Hawking fluxes.
The starting point is the structures for the two dimensional effective actionswhich are known for
the chiral (anomalous)[19] and usual (anomaly free) [20, 21] cases. The relevant expressions for the
covariant gauge current and the covariant EM tensor are obtained bytaking appropriate functional
derivatives of the chiral effective action. The arbitrary constants are fixed by imposing the covariant
boundary condition namely, the vanishing of covariant current and the covariant EM tensor at the
event horizon. The Hawking fluxes are then correctly reproduced bytaking the asymptotic infinity
limit of covariant currents and EM tensors. Finally, we note that the asymptoticforms for currents
and EM tensors obtained from this analysis are exactly matches with the asymptotic values of
currents and EM tensors computed form the usual effective action [20,21]. Note that all the above
approaches [1, 2, 12, 13, 20], to compute the Hawking flux, uses the same boundary condition.
Naturally, one would seek for further clarification of the covariant boundary condition. Indeed,
in our very recent work [22], also based on chiral effective action approach [1], we provide a
detailed explanation of this covariant boundary condition. There we notedthat the current and EM
tensor obtained by solving the anomaly equations subjected to the covariant boundary condition
agrees exactly with the result derived from the chiral effective action but by imposing the boundary
condition appropriate for the Unruh vacuum.

There is one more quick and efficient method to obtain the Hawking flux brieflyintroduced
in [2] which uses only the knowledge of covariant anomalies near the horizon. Contrary to earlier
approaches [11, 12, 13, 20] a splitting of the space in different regions (near to and away from
the horizon) using discontinuous step functions were avoided. As we shall discuss in subsequent
section, the computation of the Hawking fluxes associated with higher spin currents can be done
easily in this approach.

The organization of this paper is as follows. The calculation of Hawking fluxfrom generic
spherically symmetric black hole using chiral effective action is discussed insection 2. Also, the
role of chirality in imposing constraints on the structure of the current/EM tensor is elucidated. In
section 3 we compute the higher spin fluxes the Hawking radiation. In particular, we adopt the
covariant anomaly method [2] to compute the fluxes associated with the spin three current. Our
concluding remarks are contained in section 4.

2. Hawking fluxes from chiral effective action

Consider a generic spherically symmetric black hole represented by the metric,

ds2 = f (r)dt2− 1
h(r)

dr2− r2(dθ 2 +sin2θdφ2) (2.1)

where f (r) andh(r) are the metric coefficients. The event horizon is defined byf (rh) = h(rh) = 0.
Also, in the asymptotic limit the metric (2.1) become Minkowskian i.ef (r → ∞) = h(r → ∞) = 1
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and f ′′(r → ∞) = f ′′′(r → ∞) = h′′(r → ∞) = h′′′(r → ∞) = 0.
Now consider quantum fields (scalar or fermionic)propagating on this background. It was shown
that [11, 12], by using a dimensional reduction technique, the effectivefield theory near the event
horizon becomes two dimensional with the metric given by ther − t section of (2.1)

ds2 = f (r)dt2− 1
h(r)

dr2
. (2.2)

Note that
√−g =

√

−detgµν =
√

f
h 6= 1 (unlessf (r) = h(r)). On this two dimensional back-

ground, the modes which are going in to the black hole (for example left movingmodes) are
lost and the effective theory become chiral. The effective action representing such chiral theory is
known in the literature [19]. We adopt the following strategy. The expressions for covariant current
and the covariant EM tensor will be deduced from this chiral effective action , suitably modified
by local counterterm. Local structures are obtained by introducing auxiliary variables whose so-
lutions contain arbitrary constants. These constants are fixed by imposing appropriate boundary
conditions.

The two dimensional chiral effective action [1, 19] is defined as,

Γ(H) = −1
3

z(ω)+z(A) (2.3)

whereAµ andωµ are the gauge field and the spin connection, respectively, and,

z(v) =
1

4π

∫

d2xd2yεµν∂µvν(x)∆−1(x,y)∂ρ [(ερσ +
√
−ggρσ )vσ (y)] (2.4)

Here ∆−1 is the inverse of d’Alembertian∆ = ∇µ∇µ = 1√−g∂µ(
√−ggµν∂ν) and ε tr = −ε rt =

−εtr = εrt = 1. From a variation of this effective action the energy momentum tensor and the gauge
current are computed. These are shown in the literature [8, 9, 14, 15, 16, 17] as consistent forms.
To get their covariant forms in which we are interested, however, appropriate local polynomials
have to be added. This is possible since energy momentum tensors and currents are only defined
modulo local polynomials. Thus we obtain,

δΓH =
∫

d2x
√
−g

(

1
2

δgµνTµν +δAµJµ
)

+ l (2.5)

where the local polynomial is given by [19],

l =
1

4π

∫

d2x εµν(AµδAν −
1
3

wµδwν −
1
24

Rea
µδea

ν) (2.6)

The covariant energy momentum tensorTµν and the covariant gauge currentJµ are read-off from
the above relations as [1, 19],

Tµ
ν =

e2

4π
(DµBDνB)

+
1

4π

(

1
48

DµGDνG− 1
24

DµDνG+
1
24

δ µ
ν R

)

(2.7)
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Jµ = − e2

2π
DµB. (2.8)

Note the presence of the chiral covariant derivativeDµ expressed in terms of the usual covariant
derivative∇µ ,

Dµ = ∇µ − ε̄µν∇ν = −ε̄µνDν
, (2.9)

whereε̄µν =
√−gεµν andε̄µν = 1√−gεµν . The auxiliary fieldsB andG in (2.7,2.8) are defined as

B(x) =
∫

d2y
√
−g∆−1(x,y)ε̄µν∂µAν(y) (2.10)

G(x) =
∫

d2y
√
−g∆−1(x,y)R(y) (2.11)

so that they satisfy

∆B(x) = ε̄µν∂µAν(x) (2.12)

∆G(x) = R(x) (2.13)

whereR is the two dimensional curvature scalar, and for the metric (2.2) it is given by

R=
f ′′h
f

+
f ′h′

2 f
− f ′2h

2 f 2 . (2.14)

It is possible to reproduce the covariant gravitational/gauge Ward identities[1, 8, 9, 16, 17, 19]
from (2.7,2.8). For example, using (2.8), (2.10) and (2.12), we find,

∇µJµ = − e2

2π
∆B = − e2

2π
ε̄µν∂µAν =

−e2

4π
√−g

εµνFµν (2.15)

This is the expression for covariant gauge anomaly [8, 9]. Similarly, we can easily show, by using
(2.7-2.13), that the EM tensor (2.7) satisfy the covariant gravitational Ward identity, given by [1,
19],

∇µTµν = JµFµν +
1

96π
ε̄νµ∇µR . (2.16)

The first term in the above expressions is the classical Lorentz force term, while the second term is
the covariant gravitational anomaly [16, 17]. Note also the presence of the covariant trace anomaly
following from (2.7)

Tµ
µ =

R
48π

. (2.17)

The chiral theory has both a diffeomorphism anomaly and a trace anomaly (2.17). This is distinct
from the vector case where there is only a trace anomalyTµ

µ = R
24π while the diffeomorphism

invariance kept intact.
Solutions of (2.12) and (2.13) are given by,

B(x) = Bo(r)−at+b ; ∂rBo =
At(r)+c√

f h
(2.18)

and

G = Go(r)−4pt+q ; ∂rGo = − 1√
f h

(
f ′√−g

+z) (2.19)
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wherea,b,c, p,q andz are constants. Now, by substituting (2.18) in (2.8) we obtain,

Jr(r) =
e2

2π
√−g

[At(r)+c+a] (2.20)

Jt(r) =
e2

2π f
[At(r)+c+a] =

√−g
f

Jr
. (2.21)

Likewise, by using (2.18,2.19) in (2.7) we find

Tr
t =

e2

4π
√−g

Ā2
t (r)+

1
12π

√−g
P̄2(r)+

1
24π

√−g
[

f ′√−g
P̄(r)+ Q̄(r)] (2.22)

Tr
r =

R
96π

−
√−g

f
Tr

t (2.23)

Tt
t = −Tr

r +
R

48π
(2.24)

with Āt(r), P̄(r) andQ̄(r) defined as

Āt(r) = At(r)+c+a (2.25)

P̄(r) = p− 1
4
(

f ′√−g
+z) (2.26)

Q̄(r) =
1
4

h f ′′− f ′

8
(
h f ′

f
−h′) . (2.27)

From equations (2.20,2.21) it is evident that there is only one independentcomponent ofJµ . The
point is that currentJµ (2.8), derived from the chiral effective action, satisfy the chirality condition
[22]

Jµ = −ε̄µνJν
, (2.28)

which fixes one of the component ofJµ . This can be further illustrated by transformingJµ to null
coordinates given by

v = t + r∗ ;
dr
dr∗ =

√

f h (2.29)

u = t − r ∗ (2.30)

The metric (2.2) in these coordinates looks like

ds2 =
f (r)
2

(dudv+dvdu). (2.31)

Then by substitutingµ = v in the chirality condition (2.28) we get

Jv = 0 , (2.32)

while Ju cannot be determined, solely, from the chirality criterion. Similar considerations also
holds for stress tensorTµν (2.7)1.

1See [22] for detail discussion of chirality.
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Next, we fix the arbitrary constants appearing in the expression of current Jr (2.20) and stress
tensorTr

t (2.22) by imposing the covariant boundary condition [1, 2, 12, 13, 20],namely, the
vanishing of covariant current and covariant EM tensor at the horizon i.e

Jr(r = rh) = 0 (2.33)

Tr
t(r = rh) = 0, (2.34)

this yields, from (2.20)
c+a = −At(rh) (2.35)

while, from equation (2.22) we get

p =
1
4
(z±

√

f ′(rh)h′(rh)) . (2.36)

Finally, by substituting (2.35) in (2.20) we obtain

Jr(r) =
e2

2π
√−g

[At(r)−At(rh)] (2.37)

(2.38)

and the other componentJt is determined from (2.21). Similarly, from (2.22) and (2.35,2.36) we
get the expression forTr

t :

√
−gTr

t(r) =
e2

4π
[At(r)−At(rh)]

2 +[Nr
t (r)−Nr

t (rh)] (2.39)

where,

Nr
t =

1
96π

(

h f ′′ +
f ′h′

2
− f ′2h

f

)

. (2.40)

Now we observe that the covariant gauge (2.15) as well as gravitational(2.16) anomaly vanish
at (r → ∞) limit. Thus, we can compute the Hawking charge and energy flux, which hasto be
measured at asymptotic infinity, by taking the asymptotic infinity limit ofJr(r) (2.37) andTr

t(r)
(2.39).

Charge f lux= Jr(r → ∞) = − e2

2π
At(rh), (2.41)

Energy f lux= Tr
t(r → ∞) =

e2

4π
A2

t (rh)+
1

192π
f ′(rh)h

′(rh) . (2.42)

These are the desired expressions of Hawking charge and energy flux from the generic spherically
symmetric black hole and it agrees with the result obtained by anomaly cancellation approach [23].

3. Higher spin fluxes via covariant anomaly

In this section we compute the Hawking flux obtained from higher spin anomaly.It cor-
responds to higher spin moments of Hawking flux. These results have earlier appeared in [18]
using anomaly (covariant) cancellation mechanism [13]. Also, recently Sonora and collaborators

7
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have computed the Hawking fluxes associated with the higher spin currents,using the usual trace
anomaly and the properties ofW∞ algebra [24, 25].

Here we would present an alternative derivation based on the approach briefly discussed in [2].
An important advantage of this approach is that the computation involved only the expressions for
anomalous covariant Ward identities and the covariant boundary conditions. The splitting of space
into two regions, which was essential in the approaches [11, 12, 13, 20], is avoided. First, for the
sake of completeness, we shall discuss the covariant anomaly approach[2] to compute the fluxes
of Hawking radiation associated with the gauge current and stress tensorin detail. Then, it is easy
to generalise this analysis to obtain the Hawking fluxes associated with the higher spin currents.

For the right moving modes the expression for covariant gauge anomaly is given by [8, 9],

∇µJµ = − e2

4π
√−g

εαβ Fαβ . (3.1)

Note that the same Ward identity (2.15) was also obtained in the previous section by exploiting
structure of the chiral effective action.

For a static background (2.2), equation (3.1) becomes,

∂r(
√
−gJr) =

e2

2π
∂rAt . (3.2)

Solving this equation we get

√
−gJr = cH +

e2

2π
[At(r)−At(rh)]. (3.3)

HerecH is an integration constant which can be fixed by imposing the covariant boundary condition
(2.33) lead tocH = 0 and hence the expression for the current becomes,

Jr =
e2

2π
√−g

[At(r)−At(rh)]. (3.4)

Note that the Hawking flux is measured at infinity where there is no anomaly. This necessitated a
split of space into two distinct regions - one near the horizon and one awayfrom it - and the use
of two Ward identities [11, 12, 13, 20]. This is redundant if we observe that the anomaly (3.2)
vanishes at the asymptotic infinity. Consequently, in this approach, the flux isdirectly obtained
from the asymptotic infinity limit of (3.4):

Charge f lux= Jr(r → ∞) = −e2At(rh)

2π
. (3.5)

This reproduces the familiar expression for the charge flux [1, 2, 12, 13] .
Next, we consider the expression for the two dimensional covariant gravitational Ward identity

[1, 13, 19] (see also (e.2.16) in the previous section),

∇µTµν = JµFµν +
ενµ

96π
√−g

∇µR (3.6)

andR is given in (2.14). Now by simplifying (3.6) we get, in the static background,

∂r(
√
−gTr

t) = ∂rN
r
t (r)−

e2At(rh)

2π
∂rAt(r)+∂r(

e2A2
t (r)

4π
) (3.7)

8
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whereNr
t (r) is given in (2.40). The solution for (3.7) is given by

√
−gTr

t = bH +[Nr
t (r)−Nr

t (rh)]+
e2A2

t (rh)

4π
− e2

2π
At(rh)At(r)+

e2A2
t (r)

4π
. (3.8)

HerebH is an integration constant . Implementing the covariant boundary condition (2.34) yields
bH = 0. Hence (3.8) reads

√
−gTr

t(r) = [Nr
t (r)−Nr

t (rh)]+
e2

4π
[At(r)−At(rh)]

2
. (3.9)

Since the covariant gravitational anomaly (3.6) vanishes asymptotically, we can compute the energy
flux as before by taking the asymptotic limit of (3.9)

energy f lux= Tr
t(r → ∞) = −Nr

t (rh)+
e2A2

t (rh)

4π

=
1

192π
f ′(rh)g

′(rh)+
e2A2

t (rh)

4π
. (3.10)

This reproduces the expression for the Hawking flux found by using theanomaly cancelling ap-
proach of [1, 12, 13, 20].

Now we concentrate our attention on the higher spin currents. Particularly,we shall do our
analysis for spin 3 currentJµ

νρ . The covariant expression for divergent anomaly for spin 3 current
is given by [18],

∇µJµ
νρ = −FνµTµ

ρ −FρµTµ
ν − ∇ν(RJρ)

16
− ∇ρ(RJν)

16

+
1
16

gνρ∇µ(RJµ)+
1

24
√−g

[ενσ ∇σ ∇µFµ
ρ

+ερσ ∇σ ∇µFµ
ν −gνρεασ ∇σ ∇µFµα ] (3.11)

hereTµ
ν andJµ are covariant EM tensor and U(1) current respectively. In the above expression

term in the square bracket represents the anomalous (quantum) correction to the classical result.
This piece is the spin 3 generalization of the divergence anomalies in the electric and gravitational
backgrounds. Note that the expectation value of the current depends only on r in the static black
hole background taken here (2.2), hence, the relevantν = ρ = t component of (3.11) becomes,

∂r(
√
−gJr

tt) = −2FtrT
r

t −
1
8

∇t(RJt)+
1
16

gtt∇µ(RJµ)

+
1
24

[−2∇r∇µFµ
t −gttεασ ∇σ ∇µFµα ] . (3.12)

The solution for above equation is given by

√
−gJr

tt = DH +
∫ r

rh

dr∂r [
f ′(rh)h′(rh)

96π
At(r)−

e2At(rh)

2π
A2

t (r)−
e2At(rh)

32π
(h f ′′ + f ′h′− 2 f ′2h

f
)

+
A3

t (r)
6π

− h f∂ 2
r At(r)

96π
+

h f ′∂rAt(r)
48π

+
(h f ′′ + f ′h′− 2 f ′2h

f )At(r)

32π
]. (3.13)

9
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whereDH is an integration constant and its value is determined by imposing the covariant boundary
condition,Jr

tt(r = rh) = 0, this yieldDH = 0. Now, the anomalous part in (3.11) vanish in the
asymptotic infinity limit. Hence the Hawking flux for spin 3 current is just given by Jr

tt(r → ∞),

Jr
tt(r → ∞) = − f ′(rh)h′(rh)

96π
− A3

t (rh)

6π
. (3.14)

This result coincide with appropriate (n=2) moment of the Hawking flux [18].

4. Conclusions

In this paper we discussed in detail the effective action approach [1] and the covariant anomaly
method [2] to compute the Hawking flux from generic spherically symmetric blackhole. First, the
effective action approach was discussed. As stated in [11, 12], if we neglect, classically, the contri-
bution from ingoing modes, then the near horizon effective theory becomes chiral. Consequently,
this theory can be represented by the chiral effective action [1]. The covariant expressions for
currentJµ and stress tensorTµν were then obtained from this chiral effective action, modified by
the local counterterm. Expectedly, current and stress tensor satisfy thecovariant anomalous Ward
identities. Arbitrary constants appearing in the expressions forJr andTr

t were fixed by imple-
menting the covariant boundary conditions [13]. Then by noting the fact that covariant gauge as
well as gravitational anomalies vanish in the asymptotic infinity limit, the Hawking charge and
energy flux were computed by appropriately taking the asymptotic limit of the covariant current
and the covariant stress tensor.

Further, we apply the covariant anomaly method [2] to derive the Hawking radiation associated
with the higher spin currents. Contrary to earlier approaches [11, 12, 13, 20], this method uses only
the covariant gauge and gravitational Ward identities defined near the horizon. Another advantage
is that unlike the anomaly (covariant/consistent) cancellation mechanism, splitting of space into
two regions - near to and away from the event horizon - using discontinuous step functions, was
avoided.

A reason in favor of working with the covariant anomalies is the fact that their functional forms
are unique, being governed solely by gauge/diffeomorphism transformations. This is not valid for
consistent anomalies. This fact becomes crucial when we discuss the higher spin fluxes. The point
is that for higher spin currents only the covariant expressions of anomalies were known [18]. Here
we performed the computations for spin 3 current. The fluxes of Hawking radiation were obtained
by solving the covariant Ward identity near the horizon. In this case also, inthe asymptotic infinity
limit, the covariant anomaly vanishes. The Hawking radiation correspondingto spin 3 current was
the obtained by taking the asymptotic limit of covariant spin 3 current. Our results matches exactly
with the earlier finding [18] based on the anomaly cancellation approach.
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