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1. Introduction

Recent interest to black rings [1] stimulated search of new generating techniques for five-
dimensional Einstein equations both vacuum and coupled to vector and/or scalar fields. An efficient
tool to proliferate exact solutions to D-dimensional Einstein equations depending on three coordi-
nates consists in dimensional reduction based on the assumption of existence ofD−3 commuting
Killing symmetries (toroidal reduction). Starting with D-dimensional Einstein equations coupled
to scalar and vector fields one is able to derive a three-dimensional gravity coupled sigma-model in
which the target space variables incorporate the initial scalars, vectors and moduli of the toroidal
reduction. For a particular class of theories the target space turns out to be a coset spaceG/H
whereG is some semi-simple group known as the hidden symmetry group(for a recent review see
[2]). This symmetry can be used to generate new solution formknown ones with the same three-
dimensional metric. The sigma-model representation may also serve a basis of further reduction to
two dimensions [3] (looking for solutions depending only ontwo variables), where more powerful
methods can be developed such as inverse scattering technique [4]. Recently such an approach to
vacuum five-dimensional relativity has undergone an impressive development [5] and resulted in
construction of rather sophisticated ring configurations [6]. For charged rings no such technique
was available so far, though generation via some restrictedtransformation involving vector fields
were used [7]. Our matrix formulation opens a way to develop such methods in the general case of
minimal andU(1)3 5D supergravities describing charged configurations.

Sigma-model generating technique for minimal five-dimensional supergravity was developed
in [8, 9], for an earlier discussion of hidden symmetries in this theory see [10]. The hidden symme-
try is this case is the non-compact versionG2(2) of the lowest exceptional groupG2. To formulate
the solution generating technique one has to use some matrixrepresentation of the coset. Rep-
resenting the seed solution in the matrix terms and acting bysymmetry transformations one can
extract the sigma-model variables for new solutions. In [8,9] an explicit 7× 7 representation of
the cosetG2(2)/SL(2,R)2 was constructed using the representation ofG2 found by Gunyadin and
Gursey [11]. The generalization to the case of five-dimensional supergravity with threeU(1) vector
and two scalar fields was given in [12]. Apart from being more general, this theory is interesting
by the fact that the corresponding hidden symmetry is given by a familiar groupSO(4,4). Actu-
ally, one of the ways to construct the matrix representationof G2(2) consists in usingSO(4,4) as
a starting point [11] and imposing suitable constraints. The matrix representation of the relevant
three-dimensional cosetSO(4,4)/SO(4)×SO(4) is given in terms of the 8×8 matrices which are
split into the 4× 4 blocks. By freezing the scalar moduli and identifying the vector fields one
reduces this theory to minimal 5D supergravity thus providing an alternative formulation of the
technique of [8] in terms of the 8×8 matrices.

Generation of the new solution appeals to transformation ofthe target space variables by the
hidden symmetry group. This part of the procedure is purely algebraic. Another part consists in
solving the differential dualisation equations relating the target space variable to the metric and
vector fields [8, 12]. These equations have to be solved twice: first for the seed solution to obtain
its description in terms of the coset matrix, and then for thetransformed solution in order to extract
the metric and the matter fields from the transformed coset matrix. Solving these equations may
present technical difficulties on the second step if the generating transformations are complicated
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enough. To remedy this problem, we propose to pass to dualized variables in the matrix form. Such
a possibility is suggested by the fact that the three-dimensional dual to the sigma-model matrix-
valued current one-form is closed by virtue of the equationsof motion. Then locally it is exact,
and this provides the matrix-valued one-form whose exterior derivative is dual to the the initial
matrix current. This dual matrix transforms under the global action of the hidden symmetry by
some related transformation, and thus it can be found algebraically from the corresponding seed
matrix. From this can read out the metric and matter fields of the transformed solution algebraically
avoiding the inverse dualisation problem.

Our primary motivation to develop the generating techniques for 5D supergravity was lack of
the general black ring solution possessing the electric charges (one in the minimal case and three
in theU(1)3 case), the magnetic charges, the mass and two independent rotation parameters [1]. In
[8] an attempt was made to construct a charged black ring starting with the neutral solution with
two rotation parameters found by Pomeranski and Senkov [13]. But the resulting solution was
plagued with a conical singularity. To be able to derive a regular solution, one has to start with a
non-regular seed solution with an extra free parameter, which can be fixed after the transformation.
In principle, from the counting of free parameters in the transformations preserving asymptotic
behavior of black rings, one finds that the general black ringcan be generated indeed starting from
some known solutions. But so far all attempts to find such a solution in a concise form were
unsuccessful.

In this paper we illustrate the application of our techniquegenerating new Kaluza-Klein
squashed black holes. These black holes look as five-dimensional near the event horizon exhibiting
the S3 strucure, but asymptoticallyS3 collapses to a twisted bundle ofS1 over S2 with a constant
radius ofS1 and growing radius ofS2. Thus at infinity they become four-dimensional objects with
a compactified fifth dimension. One such solution to five-dimensional Einstein-Maxwell system
was proposed by Ishihara and Matsuno [14] (non-rotating). Its physical parameters and thermo-
dynamical properties were investigated in [15, 16]. A certain class (but not all) of squashed black
holes can be obtained by the so-called squashing transformation. This procedure was applied to
asymptotically flat [14, 17, 18] and non-asymptotically flatsolutions such as Kerr-Gödel black
holes [19, 20, 21]. In an attempt to enlarge the class of solutions, more recently Tomizawa, Yasui
and Morisawa [22] appliedG2(2) transformations of [8] to construct a generalization of thecharged
Rasheed black hole [23] obtaining a new solution with four independent parameters: mass, angular
momentum, Kaluza-Klein parameterβ (in the notation of [23]) and an electric charge. Here we
will derive a more general five-parametric solution adding as an independent parameter the quan-
tity α of [23], which corresponds to an electric charge in the four-dimensional interpretation of the
Rasheed solution.

2. General setting

TheU(1)3 5D supergravity may be regarded as a truncated toroidal compactification of the
11D supergravity:

I11 =
1

16πG11

∫ (
R11⋆111− 1

2
F[4]∧⋆11F[4]−

1
6

F[4]∧F[4]∧A[3]

)
, (2.1)

3
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whereF[4] = dA[3]. Assuming an ansatz for the metric

ds2
11 = ds2

5 + X1(dz2
1 + dz2

2

)
+ X2(dz2

3 + dz2
4

)
+ X3(dz2

5 + dz2
6

)
, (2.2)

and the form field

A[3] = A1∧dz1∧dz2 + A2∧dz3∧dz4 + A3∧dz5∧dz6,

where all functions are independent ofz, we obtain the the bosonic sector of 5D supergravity
coupled to three scalar moduliX I (I = 1,2,3), satisfying the constraintX1X2X3 = 1, and to three
vector fieldsAI:

I5 =
1

16πG5

∫ (
R5 ⋆5 1−1

2
GIJdX I∧⋆5dX J−1

2
GIJF I∧⋆5FJ−1

6
δIJKF I∧FJ∧AK

)
, (2.3)

GIJ = diag
(
(X1)−2, (X2)−2, (X3)−2) , F I = dAI, I,J,K = 1,2,3.

Here the Chern-Simons coefficientsδIJK = 1 for the indicesI,J,K being a permutation of 1, 2, 3,
and zero otherwise. Contraction of the above theory to minimal 5D supergravity is effected via an
identification of the vector fields:

A1 = A2 = A3 =
1√
3

A,

and freezing out the moduli:X1 = X2 = X3 = 1. This leads to the Lagrangian

L5 = R5 ⋆5 1− 1
2

F ∧⋆5F − 1

3
√

3
F ∧F ∧A.

It is worth noting that the 5D Einstein-Maxwell theory without the Chern-Simons term does not
lead to the three-dimensional sigma model with a semi-simple hidden symmetry group, so in this
case the solution generating technique can be formulated only for the static truncation of the theory.
This explains why the charged rotating black hole solutionsare not known analytically.

2.1 Four-dimensional view

Consider reduction of the D=5 action (2.3) to four dimensions. We assume that the 5D space-
time has the structureM5 = M4×S1, whereS1 is a circle, and is parameterized by the coordinates
{xµ ,z}, µ = 1, . . . ,4 with z relating to the circle. Following to the standard procedurewe decom-
pose the 5D metric as

ds2
5 = e

φ√
3 ds2

4 + e−
2φ√

3 (dz+ a)2, (2.4)

where the isds2
4 = gµν(x)dxµ dxν , the Kaluza-Klein one-form isa = aµdxµ andφ is the dilaton. In

a similar way the 5D vector fieldsAI(xµ ,z) are decomposed as

AI(xµ ,z) = AI(xµ )+ uIdz, (2.5)

whereuI are the axions. All the above fields do not depend onz. Inserting these decompositions
into the 5D action we get the 4D lagrangian

L4 = R4⋆1− 1
2

⋆dφ ∧dφ − 1
2

GIJ ⋆dX I ∧dX J − 1
2

e
2φ√

3 GIJ ⋆duI ∧duJ − 1
2

e−
√

3φ ⋆F ∧F(2.6)

− 1
2

e−
φ√
3 GIJ ⋆F I ∧FJ − 1

2
δIJKdAI ∧dAJuK ,

4
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whereF = da andF I = dAI −duI ∧a are the field strength two-forms. Our purpose is to rewrite
this lagrangian in the form exhibiting the S-duality symmetry. First of all we consider the scalar
part of (2.6) written in the following form

e−1
4 Lscal =

1
2

(
(∂φ)2 + GIJ∂X I∂X J + e

2φ√
3 GIJ∂uI∂uJ

)
= ĜAB(Φ̂)∂ Φ̂A∂ Φ̂B, A,B = 1, . . . ,6,

where∂ ≡ ∂/∂xµ , e4 is the Hodge dual to unity:e4 ≡ ⋆1 =
√−gd4x and all index operations

refer to the metricgµν . The potentialŝΦA combine the six variables{X1,X2,φ ,uI} and realize the
mapΦ̂A : xµ ∈ M4 → Φ̂A(xµ ) ∈ Mscal between the 4D Minkowskian space-time and the target
space with the metricĜAB(Φ̂). Replacing the dilatonφ and the moduliX I by the new variablesα I :
α I = φ/

√
3− lnX I enable us to simplifyLscal as follows

e−1
4 Lscal =

1
2 ∑

I

(
(∂α I)2 + e2α I

(∂uI)2
)

.

The structure of the scalar manifoldMscal becomes more transparent in terms of three complex
potentialszI = uI + ie−α I

:

e−1
4 Lscal =

1
2∑ |∂ zI |2/(Im zI)2.

The lagrangianL = 1
2|∂ z|2/(Im z)2 invariant under the groupSL(2,R) and the corresponding

target space metric is the Kähler spaceSL(2,R)/SO(2). So in our case the isometry group ofMscal

is Ĝ = (SL(2,R))3 and the corresponding target space isĜ/Ĥ = Mscal = (SL(2,R)/SO(2))3 with
the metric

ĜAB(Φ̂)dΦ̂AdΦ̂B =
1
2

(
(dφ)2 + GIJdX IdX J + e

2φ√
3 GIJduIduJ

)
=

1
2 ∑ |dzI |2/(Im zI)2.

As the second step, we reformulate the vector part of the lagrangian (2.6) according with the
structure of the bosonic lagrangian ofN = 2 supergravity coupled to vector multiplets (for a review
see the Ref.[24]). We express it in terms of the field two-forms F̃ I andF obeying to the Bianchi
identities dF̃ I = 0 anddF = 0 respectively. To extract the two-forms̃F I one has to combine
the exterior derivatived(uIa) in F I = dAI − duI ∧ a. As result we haveF I = F̃ I + uIF , where
F̃ I = dÃ ≡ d(AI −uIa). Inserting the two-formsF I anddAI expressed viãF andF into (2.6) and
integrating by parts the termsδIJK F̃ I ∧ duJuK ∧ a andδIJKduIuJuK ∧ a∧F we will obtain for the
vector part of the 4D lagrangian

Lvect =
1
2

[
e−

√
3φ ⋆F ∧F + e−

φ√
3 GIJ

(
⋆F̃ I ∧ F̃J +2⋆Fu[I ∧ F̃J] + uIuJ ⋆F ∧F

)
(2.7)

+ δIJK

(
F̃ I ∧ F̃JuK + F̃ IuJuK ∧F +

1
3

uIuJuKF ∧F
)]

.

Denote the field strength and its Hodge dual asF = 1
2Fµνdxµ ∧ dxν and⋆Fµν = 1

2Fαβ εαβ µν ,
whereεαβ µν is the totally antisymmetric Levi-Civita tensor with(−g)1/2. Assuming thatdxµ ∧
dxν ∧dxα ∧dxβ = −ε µναβe4, we find

⋆F ∧F =
1
2
FµνF µν e4 =

1
2
F 2e4, F ∧F = −1

2
Fµν ⋆F µν e4 = −1

2
F ⋆Fe4.

5
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Note that in the 4D Lorentzian signature space the double Hodge dual is⋆⋆ =−1. We then combine

the field tensors̃F I
µν andFµν into the 4-columnBµν =

(
F̃ I

µν
Fµν

)
and rewrite (2.7) in the matrix

form adopted in [25, 26]:

e−1
4 Lvect =

1
4
BT

αβ (µ̂Bαβ − 1√
2

ν̂ ⋆Bαβ),

where the symmetric 4×4 matricesµ̂ andν̂ are given by

µ̂ =


 e−

φ√
3 GIJ e−

φ√
3 GIJuJ

e−
φ√
3 GIJuJ GIJuIuJ + e−

√
3φ


 , ν̂ =

√
2

(
δIJKuK 1

2δIJKuJuK

1
2δIJKuJuK 2u1u2u3

)
.

This lagrangian yields the field equations forBT
αβ : ∇α(µ̂Bαβ − 1√

2
ν̂ ⋆ Bαβ ) = 0. Introducing

the dual field strengthHαβ as⋆H αβ = µ̂Bαβ − 1√
2
ν̂ ⋆Bαβ we see that the above equations are

the Bianchi identities forHαβ . Therefore the lagrangianLvect takes the form manifestly S-duality
symmetric:

e−1
4 Lvect =

1
4
BT

αβ ⋆H αβ =
1
8

ℑT Σ1 ⋆ℑ, ℑ =

(
Bαβ
Hαβ

)
, Σ1 =

(
0 1
1 0

)
.

It can be checked that relation betweenℑ and⋆ℑ is given by

ℑ = Ω P̂⋆ℑ,

whereΩ =

(
0 1
−1 0

)
is the 8× 8 symplectic metric and̂P is the 8× 8 matrix depending on the

potentials of the scalar manifoldsMscal

P̂ =

(
µ̂ + ν̂ µ̂−1ν̂ ν̂ µ̂−1

µ̂−1ν̂ µ̂−1

)
.

The matrixP̂ provides the representationγ of the coset elementπ(Φ̂A), namelyγ : π ∈ Mscal →
γ(π) = P̂. We then have

ĜABdΦ̂AdΦ̂B = − 1
16

Tr(dP̂dP̂−1) = −1
8

Tr(dµdµ−1−dνµ−1dνµ−1).

Consider diffeomorphism̂ΦA → Φ̂A′, which leave invariant the target space metric. It corre-
sponds to the action of some element ˆg belonging to the isometry group of the target space ˆg ∈ Ĝ.
In terms of the matrix representationγ this means that the coset matrix̂R ≡ Σ1P̂ transforms as
R̂ → R̂′ = γ(ĝ)R̂γ(ĝ−1). Inserting the expression⋆ℑ = −ΩP̂ℑ into theLtens and keeping in mind
thatΣ1Ω = −ΩΣ1 we will obtain for the tensor part of the lagrangian:

e−1
4 Lvect =

1
8

ℑT ΩR̂ℑ.

6
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If we now demand this lagrangian to be invariant under the action of γ(ĝ), we get the restrictions
for the element̃g ∈ Ĝ acting on the column asℑ → γ(g̃)ℑ. Performing the transformation we have

Lvect → L ′
vect =

1
8

ℑT γ(g̃)T Ωγ(ĝ)R̂γ(ĝ−1)γ(g̃)ℑ.

Thus the conditions forγ(g̃) areγ(g̃) = γ(ĝ) andγ(ĝ)T Ωγ(ĝ) = Ω. This relation means that there
is the symplectic embedding of the isometry group into the symplectic groupĜ → Sp(8,R) [27].
In other words,γ(ĝ) provides the symplectic representation of ˆg which rotates the fieldsℑ. Note
the full 4D lagrangian can be written in the following form

e−1
4 L4 = R4 +

1
16

Tr(∂ R̂ ∂ R̂−1)− 1
8

ℑT ΩR̂ℑ.

Thus the S-duality group for the four-dimensional reduction of theU(1)3 supergravity isSL(2,R)3,
reducing toSL(2,R) in the minimal case.

3. 3D sigma-model

Consider now further reduction to three dimensions. It is convenient to restart from 11D
supergravity. An overall assumption for the 11D manifold will be M11 = T 6 × Σ×M3 where
Σ is T 2 if both these Killing vectors are asymptotically space-like, or T 1 ×R if one of them is
asymptotically time-like. The full set of 11D coordinatesxN , N = 1, . . . ,11 is thus split intoza ∈
T 6, a = 1, . . . ,6, xi ∈M3, i = 1, . . . ,3 andzp ∈ Σ, p = 7,8. The decomposition of the 5D metric is
given by

ds2
5 = λpq(dzp + ap)(dzq + aq)−κτ−1hi jdxidx j, (3.1)

where all metric functions are independent onza andzp. The 5D metric components are parame-
terized by the KK one-formsap = ap

i dxi, the three-dimensional metrichi j of M3 and the scalars
ϕ1,ϕ2,χ , which are arranged in the following 2×2 matrix

λ = e−
2√
3

ϕ1

(
1 χ
χ χ2+ κe

√
3ϕ1−ϕ2

)
, detλ ≡−τ = κe−

1√
3

ϕ1−ϕ2,

whereκ = ± is responsible for the signature:κ = 1 for space-likez8 , andκ = −1 for time-like
z8. The ansatz (2.2) leads to the five-dimensional action (2.3). The 5DU(1) gauge fieldsAI reduce
to the 3D one-formsAI(xi) and the six axions collectively denoted as the 2D-covariantdoublet
ψ I

p = (uI ,vI) with the indexp relative to the metricλpq

AI(xi,z7,z8) = AI(xi)+ ψ I
pdzp = AI(xi)+ uIdz7 + vIdz8.

To obtain the three-dimensional sigma-model one has to dualize the electro-magnetic (EM)
one-formsAI and the KK one-formsap to scalars, which will be denoted asµI and ωp. The
dualisation equations read:

τλpqdaq = ⋆Vp,

dAI = dψ I
q ∧aq + τ−1GIJ ⋆GJ, (3.2)

7
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where the one-formsGI andVp are given by

GI = dµI +
1
2

δIJKdψJ
pψK

q ε pq,

Vp = dωp −ψ I
p

(
dµI +

1
6

δIJKdψJ
q ψK

r εqr
)
.

In the component form the Eqs.(3.2) read:1

λpq∂ [ia j]q =
1

2τ
√

h
ε i jk

[
∂kωp −ψ I

p

(
∂kµI +

1
6

δIJK∂kψJ
r ψK

t ε rt
)]

,

∂ [iA j]I = aq[ j∂ i]ψ I
q +

1

2τ
√

h
ε i jkGIJ

(
∂kµJ +

1
2

δJKL∂rψK
p ψL

q ε pq
)

. (3.3)

Substituting the metricds2
5 in the form (3.1) into the 5D action (2.3) and performing dualisation

via Eqs.(3.2) one derive the 3D gravity coupled sigma-model:

I3 =
1

16πG3

∫ √
|h|
(

R3−GAB
∂ΦA

∂xi

∂ΦB

∂x j hi j
)

d3x, (3.4)

where the Ricci scalarR3 is build using the 3-dimensional metrichi j. The set of potentials2 ΦA =

(~φ ,ψ I ,µI ,χ ,ωp), A,B = 1, . . . ,16 realizes the harmonic mapΦA : xi ∈ M3 → ΦA(xi) ∈ Mscal

between the 3D space-timeM3 and the target spaceMscal with the metricGAB(ΦC). The target
space line elementdl2 = GABdΦAdΦB has the form

dl2 =
1
2

GIJ(dX IdX J + dψ IT λ−1dψJ)− 1
2

τ−1GIJGIGJ +
1
4

Tr
(
λ−1dλλ−1dλ

)

+
1
4

τ−2dτ2− 1
2

τ−1V T λ−1V. (3.5)

It is invariant under the action of the 28-parametric isometry group SO(4,4). The target space
manifoldMscal is isomorphic to the cosetM = SO(4,4)/H, where the isotropy groupH is SO(4)×
SO(4) for κ = 1 andSO(2,2)× SO(2,2) for κ = −1. That is there is an isomorphic mapπ:
ΦA → π(ΦA) ∈ M . Moreover ifg ∈ SO(4,4) is some constant element of the isometry group then
the following transformations

π → π ′ = g◦π, ds2
3 → ds2

3

leave invariant the action (3.4).
As a convenient representative of the cosetπ(ΦA) ∈ M one can choose the matrix represen-

tation γ : π → γ(π) ≡ V , whereV is the upper triangular matrix. We assume thatV transforms

1the antisymmetrization is assumed with 1/2.
2The set~φ = (φ1,φ2,φ3,φ4) comprises four scalars related to previously introducedϕ1,ϕ2,χ andX I via

φ1 =
1√
2

(
− ln(X3)+

1√
3

ϕ1 +ϕ2

)
, φ2 =

1√
2

(
ln(X3)− 1√

3
ϕ1 +ϕ2

)
,

φ3 =
1√
2

(
ln(X3)+

2√
3

ϕ1

)
, φ4 =

1√
2

ln
X1

X2 .

8
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under the global action of the symmetry groupSO(4,4) by the right multiplication and under the
local action of the isotropy groupH by the left multiplication:V → V ′ = h(Φ)V g, whereg andh
belong to the matrix representationγ of SO(4,4) andH respectively. Given this representative, one
can construct theH−invariant matrix (which we denote the same symbolM as the coset space)

M = V T KV ,

whereK is an involution matrix invariant underH: h(Φ)T Kh(Φ) = K, and dependent on the coset
signature parameterκ . Then the transformation of the matrixM underSO(4,4) will be

M → M ′ = gT M g. (3.6)

The target space metric (3.5) in terms of the matrixM will read

dl2 = −1
8

Tr(dM dM−1). (3.7)

Choosing suitable 8×8 matrix representationγ of the isometry groupSO(4,4) we construct (see
[12] for details ) the matrix representation of the cosetM in terms of the 4× 4 block matrices
P = PT andQ = −QT̂ 3 as follows

M =

(
P PQ

QT P P̃ +QT PQ

)
,

where the block matrices are given explicitly in the Appendix.

3.1 Matrix dualisation

As we have discussed, the dualisation equations (3.3) may present difficulties in applications
of the solution generating technique. We can improve the situation performing dualisation in the
matrix form. Introducing the matrix-valued current one-form J

J = Jidxi = M dM−1

we can rewrite the 3-dimensional sigma-model action (3.4) in the following form

I3 =
1

16πG3

∫ (
R3 ⋆1− 1

8
Tr(J ∧⋆J )

)
.

In this expression the Hodge dual⋆ is assumed with respect to the 3-dimensional metrichi j.
Variation of this action with respect toJ shows that the two-form⋆J is closed:

d ⋆J = 0. (3.8)

Variation with respect to the metric leads to three-dimensional Einstein equations:

(R3)i j =
1
8

Tr(JiJ j). (3.9)

3T̂ denotes transposition with respect to the minor diagonal

9
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The first equation (3.8) means that the matrix-valued two-forms⋆J is locally exact, i.e., it can be
presented as the exterior derivative of some matrix-valuedone-formN , that is

⋆J = M ⋆dM−1 = dN . (3.10)

The matrixN is defined up to adding an arbitrary matrix-valued closed one-form, which can be
determined by choosing suitable asymptotic conditions. Now comparing the matrix dualisation
equation (3.10) with the initial dualisation equations (3.3) we find the following purely algebraic
relations between certain components of the matrix(N )ab, a,b = 1, . . . ,8 are and the previous
variablesap andAI, namely

a7 = (N )16, a8 = (N )17,

A1 = ψ1
pap +(N )15, A2 = ψ2

pap +(N )14, A3 = ψ3
pap − (N )26. (3.11)

Thus, if one manages to find the matrixN , the metric and matter fields can be extracted alge-
braically.

For the following it is important that the definition (3.10) and the transformation law for the
matrix M (3.6) under the global transformationsg ∈ SO(4,4) imply the following transformation
of the matrixN :

N → N ′ = gT N (gT )−1.

Using (3.11 one can read off the metric components and potentials without explicitly solving the
differential dualisation equations.

4. Solution generating technique

The sigma-model presented in the previous sections gives rise to generating technique which
allows to construct new solutions from the known ones. Let the metrichi j and the set of potentials
ΦA combined in the coset matrixM correspond to the metric and the three-form of some 11D seed
solution. One has to extract part of the target space potentials from the seed solution algebraically
and solve the differential dualisation equations (3.2) to find the remaining potentials. Using the
action of the target space isometries one can then constructa new solution of the sigma-model with
the same three-metrich′i j = hi j and the coset matrix

M ′ = gT M g (or M ′ = gM gT ), g ∈ SO(4,4).

Note that five target space variablesφ1, φ2, φ3, φ4, χ enter the eleven-dimensional metric alge-
braically, via the moduliX I, λpq:

ds2
11 = ∑

I,a,a′
X I
(
(dza)2 +(dza′)2

)
+ λpq(dzp + ap)(dzq + aq)+ τ−1hi jdxidx j, aa′ = (12,34,56),

while the KK vectorsap in theT 2 sector are related to the target space potentialsωp via dualisation.
Similarly, in the form-field sector,

A[3] = (A1 + ψ1
pdzp)∧dz1∧dz2+(A2 + ψ2

pdzp)∧dz3∧dz4+(A3+ ψ3
pdzp)∧dz5∧dz6

10
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the six quantitiesψ I
p are the target space potentials, while the remaining one formsAI are related

to the potentialsµI via dualisation. So the set of transformed potentialsλ ′
pq, (X I)′ and(ψ I

p)
′ can

be explicitly extracted from the coset matrixM ′. The remaining components of the transformed
metric (ds2

11)
′ and the 3-form(A[3])

′ which are parametrized as the KK one-forms(ap)′ and the
EM fields (AI)′ are determined by the dualisation equations (3.2). The inverse dualisation via the
Eqs. (3.3) may be very difficult technically. Fortunately, this problem can be reduced to a purely
algebraic one using the dualisation in the matrix form (3.10) as described in the previous section.
Taking into account that the matrixN transforms as

N ′ = gT N (gT )−1 (or N ′ = gN g−1 ), g ∈ SO(4,4)

and using the relations (3.11) one can easily obtain the desired quantities(ap)′ and(AI)′.
We will denote the 28 generators of theso(4,4) algebra as

T = (H1,H2,H3,H4, P±I, W±I , Z±I, Ω±p, X±),

with I = 1,2,3, p = 7,8. Their matrix representation can be found in the Appendix.The corre-
sponding one-parametric transformationsg = eαT , whereα is a transformation parameter, give
the set of the target space isometries.

4.1 Asymptotic conditions

An important question is how to identify the isometries we need to use in order to construct
solutions with the desired properties. These are usually associated with asymptotic conditions. In
this paper we consider asymptotic conditions corresponding to 5D Kaluza-Klein black holes with
squashed horizons embedded into eleven dimensions which correspond to the following asymptotic
manifold: T 6×R

1× Ssq, whereSsq is a squashedS3. We will assume that target space potentials
have the following general asymptotic behavior

λ ∼
(

1 0
0 −1

)
+

δλ
r

, ω7 ∼
δω7

r
, ω8 ∼

δω8

r2 , A[3] = 0, (4.1)

whereδλ , δω7 andδω8 are constant. The asymptotic behavior withδλ = δω7 = δω8 = 0 cor-
respond to the trivialS1 bundle over a 4D Minkowski space-time. The asymptotic cosetmatrix for
this case isMas = K which is preserved under the isometries belonging to the isotropy groupH of
theSO(4,4):

PI + P−I, ZI + Z−I, WI −W−I, X+ + X−, Ω7 + Ω−7, Ω8−Ω−8.

For more general asymptotic behavior such as (4.1) one have use the above transformations with
some constraints on the parameters.

To apply these isometries in the case of minimal 5D supergravity one needs to find the relevant
embedding of theG2(2) subgroup intoSO(4,4). As was shown in [12], the following combinations
of theSO(4,4) generators realize the positive and negative root generators of G2(2):

P± ∼ ∑P±I, Z± ∼ ∑Z±I, W± ∼ ∑W±I , Ω±p, X±.

Thus the isometries

P+ + P−, Z+ + Z−, W+ −W−, X+ + X−, Ω7 + Ω−7, Ω8−Ω−8

can be used to generate new KK solutions in the minimal 5D supergravity.

11
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5. Five-parametric squashed black hole

Our improved generating technique allows us to construct the charged Rasheed solution from
the Kerr Black Hole. We define the coordinatesz7 = x5, z8 = t andxi = (r,θ ,φ). In this basis
the Kerr solution of the massMK and the angular momentumJK = aMK smeared into the fifth
dimension reads

ds2
5 = (dx5)2− (1−Z)

(
dt +

aZ sin2 θ
1−Z

dφ
)2

+
ρ
∆

dr2 + ρdθ2+
∆

1−Z
sin2 θdφ2,

where
ρ = r2 + a2cos2θ , ∆ = r2−2MKr + a2, Z =

2MKr
ρ

.

The corresponding target space variables are:

λpq =

(
1 0
0 Z −1

)
, τ = 1−Z,

ω7 = 0, ω8 =
2MKacosθ

ρ
,
(

a7
φ = 0, a8

φ =
aZ sin2θ

1−Z

)
.

The above definitions of the target space potentials lead to the following blocks of the coset matrix
M

Q =




0 0 2MK acosθ
ρ 0

0 0 0 0
0 0 0 0
0 0 0 0


 , P =




1
Z−1 0 0 0
0 1

Z−1 0 0
0 0 1 0
0 0 0 1


 .

One can easily obtain the dual matrixN solving the Eq.(3.10) :

N =




−2MK ∆cosθ
ρ(1−Z) 0 0 0 0 0 Zasin2 θ

1−Z 0

0 −2MK ∆cosθ
ρ(1−Z) 0 0 0 0 0 −Zasin2 θ

1−Z

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−Za(r−2Mk)sin2 θ
r(1−Z) 0 0 0 0 0 2MK ∆cosθ

ρ(1−Z) 0

0 Za(r−2Mk)sin2 θ
r(1−Z) 0 0 0 0 0 2MK ∆cosθ

ρ(1−Z)




dφ .

To obtain the charged dyon solution from the Kerr one we applyto the seed coset matricesM and
N the following sequence of global transformations

g1 = eα(X++X−) → g2 = eβ(Ω7+Ω−7) → g3 = eγ(Ω8−Ω−8) → g4 = eδ ∑I(ZI+Z−I)

with the constant parametersα ,β ,γ ,δ . Here we assume that the matricesM andN are trans-
formed underg = g1g2g3g4 asM ′ = gM gT andN ′ = gN g−1 respectively. Then we demand
that g1g2g3 preserve theO(1

r ) asymptotic behavior ofa8
φ or, equivalently, theO( 1

r2) asymptotic
behavior ofω8. This give the same relation between three parametersα ,β ,γ as in [23]:

tan2γ = tanhα sinhβ .

12
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This constraint ensures the asymptotic flatness and the absence of the NUT parameter in the four-
dimensional solution. Then extracting the target space variables fromM ′ andN ′ , transformed
KK one-forms(ap)′ and the five-dimensional one-formA′ one can write the metric and the 3-form
field of new solution:

ds2
11 = ∑

a,a′

(
(dza)2 +(dza′)2

)

+ f (dt + Ω′)2 +
1
f D

(dx5 +Wdφ)2−D

(
ρ
∆

dr2 + ρdθ2 +
∆

1−Z
sin2θdφ2

)
,

A′
[3] = ∑

a,a′

cs
D

{
(A + B)dt− (sC + cE)dx5 +

[
c(XB−WE)− s(WC +YA)

]
dφ
}
∧dza ∧dza′ ,

with

f =
AB
D2 , Ω′ = Ω5dx5 + Ωφ dφ , D = Ac2 + Bs2

Ω5 =
C
A

s3− E
B

c3, Ωφ =
WC +YA

A
s3 +

XB−WE
B

c3.

The functionsA,B,C,E,X ,Y,W is given by

A =
2M2

Kc2
β (cα − p)+2MK

(
r(p− cαc2

β )−asαsβ c2
β cosθ

)
− pρ

p(ρ −2Mkr)
, (5.1)

B =
2M2

K(1+ cα p)(p− cαc2
β )+2MK

(
asα sβ (1+ c2

αc2
β )cosθ − r(cα p2− cαc2

β + p)
)
− pρ

p(ρ −2Mkr)
, (5.2)

E =
2MK

(
MKsα(cα c2

β − p)+ rpsα −acαsβ cosθ
)

ρ −2MKr
, (5.3)

C = −
2MKcβ (MKsα sβ + apcosθ )

ρ −2MKr
, (5.4)

W =
2MKcβ

{
MK

(
asα sin2 θ (p− cαc2

β )−2sβ rcosθ
)

+ sβ (r2 + a2)cosθ −asα prsin2 θ
}

p(ρ −2MKr)
, (5.5)

X = −
2MKacβ sin2 θ

(
MK(cα − p)− rcα

)

ρ −2MKr
, (5.6)

Y =
−2MK

{
MK

(
2sα prcosθ −asβ sin2 θ (pcα +1)

)
− sα pcosθ (a2 + r2)+ asβ rsin2 θ

}

ρ −2MKr
, (5.7)

where

p =
√

c2
α + s2

αs2
β , c⋆ = cosh⋆, s⋆ = sinh⋆, c = coshδ , s = sinhδ .

Our new solution contains five free parametersMK,a,α ,β ,δ and reduces to that of [22] ifα = 0.

13
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6. Asymptotic behavior

The functions (5.1)-(5.7) have the following asymptotic behavior at spatial infinity

A = −1−
2MKc2

β cα

p
1
r

+ O
( 1

r2

)
,

B = 1+
2MKcα(c2

β − p2)

p
1
r

+ O
( 1

r2

)
,

C = −2MKcβ (sα sβ MK + pacosθ)
1
r2 + O

( 1
r3

)
,

E = 2MKsα p
1
r

+ O
( 1

r2

)
,

X = 2MKacα cβ sin2 θ
1
r

+ O
( 1

r2

)
,

Y = 2Mksα pcosθ −2MKasβ sin2 θ
1
r

+ O
( 1

r2

)
,

W =
2MKsβ cβ cosθ

p
−2MKacβ sα sin2θ

1
r

+ O
( 1

r2

)
,

These decompositions lead to the asymptotical expression of the five-dimensional metric and the
electro-magnetic one-formA′:

ds2
5 = −dt2 +(dx5 +

2MKsβ cβ cosθ
p

dφ)2 + dr2 + r2(dθ2 +sin2 θdφ2),

A′
[3] = ∑

a,a′
A′∧dza ∧dza′ ,

A′
t =

2MKcspcα

r
+ O

( 1
r2

)
, A′

x5 =
2MKc2spsα

r
+ O

( 1
r2

)
,

A′
φ = 2MKcs

{
−spsα cosθ +

asin2θ(ssβ − ccαcβ )+2MKsα cosθ(ccβ sβ + s3p2cα)

r

}
+ O

( 1
r2

)
,

Then we define the Komar mass and angular momenta as

M =
1

2π2

∫
dΣαβ ξ α ;β

(t) ,

Jφ = − 1
2π2

∫
dΣαβ ξ α ;β

(φ) ,

Jx5 = − 1
2π2

∫
dΣαβ ξ α ;β

(x5)
,

whereξ α
(t), ξ α

(φ), ξ α
(x5)

are the Killing vector fieldsξ(t) = ξ α
(t)∂α = ∂t , ξ(φ) = ∂φ , ξ(x5) = ∂x5, which

normalized asξ 2
(t) =−1, ξ 2

(φ) = 1, ξ 2
(x5)

= 1 at infinity. The integrals are taken over the squashedS3

at spatial infinityr → ∞ and the surface element isdΣtr = r2sin(θ)dθ ∧dφ ∧dx5. Here we assume
that x5 ∈ S1 has the periodicity 2πR5. The computations of the Komar integrals with respect the
5-dimensional metric

ds2
5 = f (dt + Ω′)2 +

1
f D

(dx5 +Wdφ)2−D

(
ρ
∆

dr2 + ρdθ2+
∆

1−Z
sin2 θdφ2

)

14
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give the following results:

M = 8R5(c
2 + s2)MK pcα ,

Jφ = −4
3

R5MKa(cα cβ c3− sβ s3),

Jx5 = −4R5MK psα c3

The conserved electric chargeQe of the new solution is

Qe = − 1
4πG5

∫
dΣαβ (F

′αβ +
1√

3
√−g

εαβγδηA′
γF ′

δη),

whereF ′ = dA′. One finds that

Qe =
8π
G5

R5MKsccα p

7. Conclusions

We have presented a new formulation of solution generating technique for the 5D minimal
and U(1)3 supergravities based on the 3D sigma-model with theSO(4,4) isometry group. Starting
from any seed solution possessing two commuting Killing vector fields and using transformations
of the target space isometry group one can construct new solutions with the same three-dimensional
metric. The solution generation procedure consists in solving the dualisation equations for the seed
solution to express it in the sigma-model variables, applying someSO(4,4) transformations to get
new sigma-model potential, and finally to pass back to the metric and field variable. Usually the
last steps also involves solving the dualisation equations, but we suggest here the dualisation in the
matrix form with an independent transformation of the dual variables. This allows to avoid solving
differential equations for the backward dualisation, replacing this step by an algebraic procedure.
As an application we have obtained the five-parametric Kaluza-Klein black hole of the minimal
5D supergravity. Our generating transformations generalize those of the vacuum 5D gravity to the
presence of vector fields and open a way to develop the inversescattering technique for this more
general case.
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A. 8×8 matrix representation

We choose the following 8×8 matrix representation of the so(4,4) algebra

E =

(
A B

C −AT̂

)
, (A.1)
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whereA, B, C are the 4× 4 matrices,A, B being antisymmetric,B = −BT , C = −CT , and the
symbolT̂ in AT̂ means transposition with respect to the minor diagonal. Thediagonal matrices~H
are given by the followingA−type matrices (withB = 0 = C):

AH1 =




√
2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


 , AH2 =




0 0 0 0
0
√

2 0 0
0 0 0 0
0 0 0 0


 , AH3 =




0 0 0 0
0 0 0 0
0 0

√
2 0

0 0 0 0


 , AH4 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0

√
2


 .

Twelve generators corresponding to the positive roots are given by the upper-triangular matrices
Ek, k = 1, . . . ,12,. From these the generators labeled byk = 2,4,6,7,9,12 are of pureA-type (with
B = 0 = C):

AE2 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 , AE4 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , AE6 =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

AE7 =




0 0 0 0
0 0 0 −1
0 0 0 0
0 0 0 0


 AE9 =




0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0


 , AE12 =




0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0


 .

while the other six are of pureB type (withA = 0 = C):

BE1 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 , BE3 =




0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0


 , BE5 =




0 0 0 0
0 0 0 0
−1 0 0 0
0 1 0 0


 ,

BE8 =




0 0 0 0
−1 0 0 0
0 0 0 0
0 0 1 0


 , BE10 =




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , BE11 =




0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0


 .

The correspondence with the previously introduced generators is as follows (I = 1,2,3, p = 7,8):

PI ↔ EI, WI ↔ EI+3, ZI ↔ EI+6, Ωp ↔ Ep+3, X+ ↔ E12.

In this representation, the matrices corresponding to the negative roots,

P−I ↔ E−I, W−I ↔ E−(I+3), Z−I ↔ E−(I+6), Ω−p ↔ E−(p+3), X− ↔ E−12,

are transposed with respect to the positive roots matrices:

E−k = (Ek)
T .

16
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The following normalization conditions are assumed:

Tr(Hi,H j) = 4δi j, i, j = 1. . .4, Tr(Ek,E−k) = 2,

and the involution matrixK is chosen as

K = diag(κ ,κ ,1,1,1,1,κ ,κ).

The generators of the isotropy subgroup are selected by the equationh(Φ)T Kh(Φ) = K. They are
given by the following linear combinations of the generators:

PI −κP−I, ZI −κZ−I, WI −W−I, X+−κX−, Ω7−κΩ−7, Ω8−Ω−8.

B. Matrix representation of coset M

M =

(
P PQ

QT P P̃ +QT PQ

)
,

where the 4×4 blocksP andQ are

Q =




µ1 + u3v2−v3u2

2 ω7− u3v1u2−2u3v2u1+v3u1u2

6 −u2µ2, ω8 + v3u1v2−2v3u2v1+u3v1v2

6 − v2µ2 0

−v2 −µ3 + v1u2−u1v2

2 0
−u2 0

0


 ,

P =

(
ΨT ΛΨ, ΨT ΛΦ
ΦT ΛΨ, ΦT ΛΦ+e

√
2φ4

)
, P̃ = (P−1)T̂ .

HereΨ andΛ are the 3×3 matrices

Ψ =




1 u3 −v3

0 1 0
0 0 1


 , Λ = κ




e
√

2φ1 0 0

0 e
√

2φ2 −χe
√

2φ2

0 −χe
√

2φ2 e
√

2φ2χ2 + κe
√

2φ3




andΦ is the 3-column

Φ =




µ2 + 1
2(u1v3−u3v1)

−v1

−u1


 .
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